\(BI^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2020

Tam giác ABC cân tại A  nên góc B= góc C

theo bài ta co: BK.CH=BI^2=BI.CI => BI/BK = CH/ CI (BI=CI)

xét tam giác KBI và ICH có: góc B= góc C; BI/BK = CH/ CI

suy ra 2 tam giấc đồng dạng theo TH c.g.c.

b. từ a suy ra IK/IH = BK/CI = BK/BI (CI=BI)

và góc BKI= góc CIH.

ta có: KIB+B+BKI = 180

KIB+KIH+CIH = 180

suy ra góc B = góc KIH.

xét tam giác KIH và tam giAC KBI có:

góc B = góc I

IK/IH = BK/BI ( chứng minh trên )

suy ra 2 tam giác đồng dạng theo TH c.g.c

c. theo b suy ra góc IKH = góc BKI suy ra KI là phân giác góc BKH

d. theo c ta có IK/IH= BK/BI => IH. KB = IK. BI

tam giác KBI đồng dạng ICH => IK/IH = BI/CH => HC.IK = IH.BI

suy ra VT = IK.BI + IH. BI = BI.(IK+IH) > BI.HK ( theo bất đẳng thức tam giác: Tổng 2 cạnh trong tam giác lớn hơn cạnh còn lại)

28 tháng 2 2018

a) Xét tam giác ECB có I, F lần lượt là trung điểm của CE và CB nên IF là đường trung bình tam giác.

Suy ra \(IF=\frac{ED}{2}\)

 Xét tam giác ECA có I, D lần lượt là trung điểm của CE và EA nên ID là đường trung bình tam giác.

Suy ra \(ID=\frac{AC}{2}\)

Mà AC = BE nên ID = IF

Vậy tam giác DIF cân tại I.

b) Do tam giác DIF cân tại I nên \(\widehat{FDI}=\widehat{DFI}\)

Lại có IF là đường trung bình tam giác BEC nên IF // AB, suy ra \(\widehat{DFI}=\widehat{FDB}\)

Từ đó ta có: \(\widehat{FDI}=\widehat{FDB}\Rightarrow\widehat{BDI}=2\widehat{IDF}\)

Cũng do DI là đường trung bình nên DI // AC hay \(\widehat{BDI}=\widehat{BAC}\)

Vậy nên \(\widehat{BAC}=2\widehat{IDF}\)

7 tháng 8 2017

làm ơn giúp tôi giải bài này