Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!111
a, xét tam giác tam giác ADB và am giác ADC:
Ab=ac (gt)
ad chung
góc adc = góc adb=90 độ (gt)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D H K 1 2
a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :
AD ( cạnh chung )
\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )
AB = AC ( gt )
suy ra \(\Delta ADB\)= \(\Delta ADC\)( c.g.c )
b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng ) ( theo câu a )
Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AD\perp BC\)
c) vì \(\Delta ADB\)= \(\Delta ADC\)( theo câu a )
\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )
Mà \(\widehat{ABD}+\widehat{BDH}=90^o\); \(\widehat{ACD}+\widehat{CDK}=90^o\)
\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)
Xét \(\Delta HBD\)và \(\Delta KCD\)có :
\(\widehat{BDH}=\widehat{CDK}\)( cmt )
BD = CD ( cmt )
\(\widehat{ABD}=\widehat{ACD}\)( cmt )
suy ra \(\Delta HBD\)= \(\Delta KCD\)( g.c.g )
\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AH^2+BH^2=AB^2\) (định lí Py - ta - go).
=> \(12^2+BH^2=15^2\)
=> \(BH^2=15^2-12^2\)
=> \(BH^2=225-144\)
=> \(BH^2=81\)
=> \(BH=9\left(cm\right)\) (vì \(BH>0\)).
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AH^2+HC^2=AC^2\) (định lí Py - ta - go).
=> \(12^2+HC^2=20^2\)
=> \(HC^2=20^2-12^2\)
=> \(HC^2=400-144\)
=> \(HC^2=256\)
=> \(HC=16\left(cm\right)\) (vì \(HC>0\)).
b) Ta có: \(BC=BH+HC.\)
=> \(BC=9+16\)
=> \(BC=25\left(cm\right).\)
+ Xét \(\Delta ABC\) có:
\(AB^2+AC^2=15^2+20^2\)
=> \(AB^2+AC^2=225+400\)
=> \(AB^2+AC^2=625\) (1).
\(BC^2=25^2\)
=> \(BC^2=625\) (2).
Từ (1) và (2) => \(AB^2+AC^2=BC^2\left(=625\right).\)
=> \(\Delta ABC\) vuông tại \(A\) (định lí Py - ta - go đảo) (đpcm).
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình làm câu A thôi nha:
Xét tam giác ADB và tam giác ADC
Ta có:AB=AC (gt)
góc A1=A2 (gt)
AD là cạnh chung
=>tam giác ADB=tam giác ADC (cạnh-góc-cạnh)
Xét AHD và AKD lần lượt vuông tại H,K có:
AD: cạnh chung
HAD = KAD ( vì AD là tia phân giác góc A)
Suy ra AHD=AKD(ch-gn)
Do đó AH=AK ( 2 cạnh tương ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
a, Xét tam giác ADB và tam giác ADC có
AD _ chung ; AB = AC
Vậy tam giác ADB = tam giác ADC ( ch-cgv )
b, ^DAB = ^DAC ( 2 góc tương ứng )
Xét tam giác AHD và tam giác AKD có
^HAD = ^KAD ; AD _ chung
Vậy tam giác AHD = tam giác AKD (ch-gn)
=> AH = AK ( 2 cạnh tương ứng )
Ta có AH/AB = AK/AC => HK // BC ( Ta lét đảo )