\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}.\) . Tính P=\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

VC
12 tháng 12 2019

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\Leftrightarrow a^3=c^3=b^3\)

Ta có : \(a^3=b^3=c^3=abc\) 

\(\frac{a^3}{abc}=\frac{abc}{abc}=1\Leftrightarrow\frac{a^3+b^3+c^3}{3abc}=\frac{3abc}{3abc}=1\)

Vậy \(P=1\)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

21 tháng 10 2019

a, b, c khác 0

Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:

 \(\frac{a+3b-c}{c}\)=\(\frac{-a+b+3c}{a}\) =\(\frac{c-b+3a}{b}\)=\(\frac{a+3b-c-a+b+3c+c-b+3a}{a+b+c}=\frac{3a+3b+3c}{a+b+c}=3\)

=> \(\frac{a+3b-c}{c}=3\Rightarrow\frac{a+3b}{c}-\frac{c}{c}=3\Rightarrow\frac{a+3b}{c}=4\)

\(\frac{-a+b+3c}{a}=3\Rightarrow-1+\frac{b+3c}{a}=3\Rightarrow\frac{b+3c}{a}=4\)

\(\frac{c-b+3a}{b}=3\Rightarrow\frac{c+3a}{b}-\frac{b}{b}=3\Rightarrow\frac{c+3a}{b}=4\)

=>  P =\(\left(3+\frac{a}{b}\right).\left(3+\frac{b}{c}\right).\left(3+\frac{c}{a}\right)=\frac{3b+a}{b}.\frac{3c+b}{c}.\frac{3a+c}{a}\)

\(\frac{a+3b}{c}.\frac{b+3c}{a}.\frac{c+3a}{b}=4.4.4=64\)

22 tháng 2 2019

Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\Rightarrow a=2016k;b=2017k;c=2018k\)

\(\frac{a}{24}+\frac{b}{4}=\frac{c}{2018}\)

\(\Rightarrow\frac{2016k}{24}+\frac{2017k}{4}=\frac{2018k}{2018}\)

\(\Rightarrow84k+504,25k=k\)

\(\Rightarrow k=0\)

\(\Rightarrow a,b,c=0\)

22 tháng 2 2019

HELP ME ,PLEASE

26 tháng 11 2017

Do \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ \)

=> \(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=\frac{a+b+c+a+b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> \(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}=2+2+2=6\)

5 tháng 8 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Rightarrow a=b=c\Rightarrow M=1\)

5 tháng 8 2019

\(b^2=ac;c^2=bd\Rightarrow\frac{b}{c}=\frac{a}{b};\frac{c}{d}=\frac{b}{c}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)