Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo BĐT AM-GM :
\(a^5+\frac{1}{a}+1+1\ge4\sqrt[4]{a^5\cdot\frac{1}{a}\cdot1\cdot1}=4a\)
Dấu "=" xảy ra \(\Leftrightarrow a^5=\frac{1}{a}=1\Leftrightarrow a=1\)
+ Tương tự :
\(b^5+\frac{1}{b}+1+1\ge4b\) Dấu "=" <=> b = 1
\(c^5+\frac{1}{c}+1+1\ge4c\) Dấu "=" <=> c = 1
Do đó : \(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+6\ge4\left(a+b+c\right)\)
=> đpcm
Dấu "=" <=> a = b = c = 1
\(N=\frac{3+a^2}{3-a}+\frac{3+b^2}{3-b}+\frac{3+c^2}{3-c}\)
Ta chứng minh \(\frac{3+a^2}{3-a}\ge2a\) với mọi \(0< a< 3\), thật vậy:
\(\Leftrightarrow3+a^2-2a\left(3-a\right)\ge0\)
\(\Leftrightarrow3\left(a-1\right)^2\ge0\) (luôn đúng)
Tương tự ta có: \(\frac{3+b^2}{3-b}\ge2b\); \(\frac{3+c^2}{3-c}\ge2c\)
Cộng vế với vế: \(\Leftrightarrow N\ge2\left(a+b+c\right)=6\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bđt Cauchy:
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự:
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)
Cộng theo vế: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{3}{2}=\frac{3}{2}\)\("="\Leftrightarrow a=b=c=1\)
làm xong rồi thì please_sign
áp dụng bđt huyền thoại \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\) =\(\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\)
mà \(\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\) (tụ cm nhé )
\(\Rightarrow\ge\frac{\left(a+b+c^2\right)}{\frac{\left(ab+bc+ac\right)^2}{3}}=\frac{3\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)}{\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)}\)
m,à \(\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2+ab+bc+ac+ab+bc+ac\right)^3}{3^3}\)
=\(\frac{\left(\left(a+b+c\right)^2\right)^3}{27}=27\)
\(\Rightarrow vt\ge\frac{27\left(a^2+b^2+c^2\right)}{27}=a^2+b^2+c^2\)
dau = khi a=b=c=1
Đặt b+c=x;c+a=y;a+b=z
Áp dụng BĐT \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\), ta được
\(2\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge9\)
\(\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge4,5\)
\(\)\(\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\ge4,5\)
\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}+1+1+1\ge4,5\)
\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge1,5\)
Đẳng thức xảy ra khi và chỉ khi a=b=c