Cho ABC (AB<AC). Gọi M là trung điểm của BC,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`a,`

Ta có: \(\left\{{}\begin{matrix}\text{BE }\bot\text{ Ax}\\\text{CF }\bot\text{ Ax}\end{matrix}\right.\)

`@` Theo tiên đề Euclid

`-> \text {BE // CF}`

`b,`

Xét `2 \Delta` vuông `BEM` và `CFM`:

`\text {MB = MC (M là trung điểm của BC)}`

$\widehat {BME} = \widehat {CMF} (\text {2 góc đối đỉnh})$

`=> \Delta BEM = \Delta CFM (ch-gn)`

`c,`

Vì `\Delta BEM = \Delta CFM (b)`

`-> \text {BE = CF (2 cạnh tương ứng)}`

loading...

a:BE vuông góc AM

CF vuông góc AM

=>BE//CF

b: Xet ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

góc BME=góc CMF

=>ΔBEM=ΔCFM

b: ΔBEM=ΔCFM

=>BE=CF

10 tháng 12 2016

Kí hiệu tam giác là t/g nhé

a) Có: BE _|_ Ax (gt)

CF _|_ Ax (gt)

Suy ra BE // CF (1)

Xét t/g EMB vuông tại E và t/g FMC vuông tại F có:

BM = CM (gt)

EMB = FMC ( đối đỉnh)

Do đó, t/g EMB = t/g FMC ( cạnh huyền và góc nhọn kề)

=> BE = CF (2 cạnh tương ứng) (2)

ME = MF (2 cạnh tương ứng) (3)

(1); (2) và (3) là đpcm

b) Xét t/g EMC và t/g FMB có:

EM = MF (câu a)

EMC = FMB ( đối đỉnh)

CM = BM (gt)

Do đó, t/g EMC = t/g FMB (c.g.c)

=> CE = BF (2 cạnh tương ứng) (4)

ECM = FBM (2 góc tương ứng)

Mà ECM và FBM là 2 góc so le trong

Nên EC // BF (5)

(4) và (5) là đpcm

 

 

20 tháng 4 2017

Hai tam giác vuông BME, CMF có:

BM=MC(gt)

ˆBMEBME^=ˆCMFCMF^(đối đỉnh)

Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).

Suy ra BE=CF.



21 tháng 4 2017

Em phải vẽ hình nhé !

16 tháng 11 2016

Ta có hình vẽ:

x A B C M E F

Δ CFM có: CFM + FMC + MCF = 180o

Δ EMB có: EMB + MBE + BEM = 180o

Mà CFM = MEB = 90o

FMC = BME (đối đỉnh) nên MCF = MBE

Xét Δ MCF và Δ MBE có:

MCF = MBE (cmt)

CM = BM (gt)

FMC = EMB (đối đỉnh)

Do đó, Δ MCF = Δ MBE (c.g.c)

=> CF = BE (2 cạnh tương ứng)

15 tháng 11 2017

g-c-g mà bạn

14 tháng 12 2018

Lời giải:

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

Hai tam giác vuông BME và CMF có

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)

⇒ BE = CF (hai cạnh tương ứng).

Kiến thức áp dụng

+ Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Giải bài 38 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

      ΔABC vuông tại A và ΔDEF vuông tại D có:

      BC = EF

      ∠B = ∠E

      ⇒ΔABC = ΔDEF

19 tháng 12 2016

A B C M x 1 2 E F

19 tháng 12 2016

Ta có hình vẽ trên:

Xét 2 tam giác vuông MBE và tam giác MCF có:

BM = MC (gt)

góc M1 = góc M2 (đối đỉnh)

suy ra tam giác MBE = tam giác MCF (cạnh huyền - góc nhọn)

suy ra BE = CF (2 cạnh tương ứng)

Vậy BE = CF

8 tháng 3 2022

1: S=8⋅62=24(cm2)S=8⋅62=24(cm2)

2: Xét ΔABC vuông tại A có AH là đường cao

nên AC2=HC⋅BCAC2=HC⋅BC

3: Xét ΔAHB vuông tại H có HM là đường cao

nên AM⋅AB=AH2(1)AM⋅AB=AH2(1)

Xét ΔAHC vuông tại H có HN là đường cao

nên AN⋅AC=AH2(2)AN⋅AC=AH2(2)

Từ (1) và (2) suy ra AM⋅AB=AN⋅ACAM⋅AB=AN⋅AC

=>AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN∼ΔACB

4 tháng 3 2022

Mọi người ơi giúp mình với,mình sắp phải nộp bài rồi.Mong mọi người giúp đỡ ạ.