Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tgiac ABH và ACH đều vuông ở H
Do tổng 3 góc trong 1 tgiac là 180o nên ta có: góc B + HAB = C + HAC = 90o (1)
Xét tgiac ABC có AB < AC => góc C < góc B (2)
(1), (2) => góc HAC > HAB
Bài làm ( Bạn chú ý vẽ hình ra nha , mình ngại làm )
a)+) Xét tam giác ADE có : AD = AE ( GT )
=> ADE là tam giác cân tại A ( định nghĩa )
=> Góc ADE = \(\frac{180^o-\widehat{A}}{2}\left(1\right)\)
+) Vì ABC cân tại A
\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) => Góc ADE = Góc ABC
Mà 2 góc này ở vị trí đồng vị
=> DE // BC ( ĐPCM )
b) Ta có :
AD + DB = AB
AE + EC = AC
Mà AD = AE ; AB = AC
=> DB = EC
Xét tam giác MBD và tam giác MCE có :
DB = EC
Góc DBM = góc ECM ( tam giác ABC cân tại A )
BM = MC ( M là trung điểm của BC )
=> TAm giác MBD = tam giác MCE ( c . g . c )
c) Xét tam giác AMD bà tam giác AME có :
AD = AE
AM : cạnh chung
DM = EM ( tam giác MBD = tam giác MCE )
=> tam giác AMD = tam giác AME ( c.c.c )
a, xét \(\Delta AMBva\Delta AMC\)
AB=AC
AM cạnh chung
MB=MC
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b, xét \(\Delta AMBva\Delta CMD\)
AM=MD
\(\widehat{AMB}=\widehat{CMD}\)
MB=MC
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\)
mà 2 góc này ở vị chí so le trong
\(\Rightarrow AB//CD\)
c, theo bài: tia MD là tia dối của tia MA
\(\Rightarrow\widehat{AMD}=180^0\)
\(\widehat{KMD}=\widehat{IMA}\)( 2 góc đối đỉnh)
ta có: \(\widehat{AMD}=\widehat{AMK}+\widehat{KMD}\)
hay\(\widehat{AMD}=\widehat{AMK}+\widehat{AMI}=180^0\)
\(\Rightarrow\widehat{IMK}=180^0\)
\(\Rightarrow\)I,M,K thẳng hàng
a, xét tam giác ABE và tam giác ADE có : AE chung
AB = AD (Gt)
^DAE = ^BAE do AE là pg của ^BAC (gt)
=> tam giác ABE = tam giác ADE (c-g-c)
b, AB = AD (gt)
=> tam giác ABD cân tại A (đn)
c, đề sai
a) Xét ∆ vuông ABC và ∆ vuông AED ta có :
AB = AD (gt)
AC = AD (gt)
=> ∆ABC = ∆AED ( 2 cgv)
=> BD = DE
b) Xét ∆ABD có :
BAC = 90°
=> AD\(\perp\)AE
Mà AB = AD (gt)
=> ∆ABD vuông cân tại A
=> BDC = 45°
Chứng minh tương tự ta có :
BCE = 45°
=> BDC = BCE = 45°
Mà 2 góc này ở vị trí so le trong
=> BD//CE