Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác BAE và tam giác BHE có:
BA=BH
BE chung
góc ABE=HBE ( phân giác BE )
=> tam giác BAE = tam giác BHE (c.g.c)
=> góc BAE=BHE ( 2 góc tương ứng)
mà góc BAE= 90 độ
=> góc BHE=90 độ => EH ⊥BC .
b.tam giác BAE = tam giác BHE => BA=BH và AE=EH
=> BE là đường trung trực của AH
c.Xét tam giác AKE và tam giác HCE có:
góc AEK=HEC ( đối đỉnh)
AE=EH
góc EAK=EHC (= 90 độ)
=> tam giác AKE = tam giác HCE (g.c.g)
=> EK=EC
d.Có: BA=BH => tam giác BAH cân tại B
=> góc BHA= 180 độ - góc HBA / 2 (1)
Có: BC=BH+HC
BK=BA+AK
mà BH=BA
HC=AK ( do tam giác AKE = tam giác HCE )
=> BC=BK => tam giác BCK cân tại B
=> góc BCK=180 độ - góc HBA /2 (2)
Từ (1) (2) => góc BHA=BCK
mà 2 góc ở vị trí đồng vị
=> AH//CK
e. Xét tam giác BMC và tam giác BMK có:
BC=BK
CM=KM ( M là trung điểm của KC )
BM chung
=> tam giác BMC = tam giác BMK (c.c.c)
=> góc MBC=MBK => BM là tia phân giác của góc B
mà BE cũng là phân giác của góc B
=> ba điểm B, E, M thẳng hàng.
Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.
a,Chứng minh AB = AC.
b,Tính số đo góc CAO
c,Tam giác ABC là tam giác gì ? Vì sao ?
d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO
e,Tính số đo góc CBO?
g,Chứng minh AO là đường trung trực của BC?
Các bạn giúp mình với,huhu
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath
Bài 4:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Ta có: ΔBAE cân tại B
mà BI là đường phân giác
nên I là trung điểm của AE
hay IA=IE
Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
=>BD vuông góc với AE
a/ Xét 2 t/g vuông ABD và ACE có:
AB = AC (gt)
\(\widehat{A}:chung\)
=> t/g ABD = t/g ACE (cạnh huyền - góc nhọn)
=> BD = CE (đpcm)
b/ Vì AB = AC(gt) => t/g ABC cân
=> \(\widehat{EBC}=\widehat{DCB}\)
Xét 2 t/g vuông: t/g BDC và t/g CEB có:
BC: Cạnh chung
\(\widehat{DCB}=\widehat{EBC}\)
=> t/g BDC = t/g CEB (cạnh góc vuông - góc nhọn kề)
=> DC = EB
Xét 2 t/g vuông: t/g OEB và t/g ODC có:
EB = DC (cmt)
\(\widehat{EBD}=\widehat{DCE}\) (2 góc tương ứng do t/g ABD = t/g ACE)
=> t/g OEB = t/g ODC (cạnh góc vuông - góc nhọn kề)
=> OE = OD và OB = OC
=> đpcm
c/ Ta có: \(\widehat{AOD}+\widehat{DOI}=180^o\) (kề bù)
=> A, O, I thẳng hàng (đpcm)
Xét t/g AIB và t/g AIC có:
AI: Cạnh chung
AB = AC (gt)
IB = IB (gt)
=> t/g AIB = t/g AIC (c.c.c)
=> \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)
mà \(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)
=> \(\widehat{AIB}=\widehat{AIC}=90^o\)
=> \(AI\perp BC\)
mà A,O, I thẳng hàng (cmt)
=> \(AO\perp BC\left(đpcm\right)\)
a) Xét tam giác ADB và tam giác EDB có
BD chung ; ^BAD = ^BED = 90 ; ^ABD = ^EBD
=> tam giác ABD = tam giác EBD ( ch-gn )
=> AB = BE
b) Tam giác BAC vuông tại A
=> ^B+^C = 90 độ
=> ^B = 60 độ (1)
Ta có AB = BE ( câu a )
=> tam giác ABE cân (2)
Từ 1 và 2 => tam giác ABE đều
c, Xét ∆ ADB = ∆ EDB (cmt)
➡️AD = ED (2 cạnh t/ư)
Xét ∆ vuông ADF và ∆ vuông EDC có :
AD = ED (cmt)
Góc ADF = góc EDC (đối đỉnh)
➡️∆ vuông ADF = ∆ vuông EDC (ch - gn)
➡️AF = EC (2 cạnh t/ư)
Ta có : BE + EC = BC
BA + AF = BF
mà BE = BA (∆ ADB = ∆ EDB )
EC = AF (cmt)
➡️BC = BF
➡️∆ BCF cân tại B
➡️BD là p/g đồng thời là ttuyến
mà I là trung điểm CF (gt)
➡️I thuộc BD
hay 3 điểm B, D, I thẳng hàng (đpcm)
a) Xét tam giác ADB và tam giác EDB có
BD chung ; ^BAD = ^BED = 90 ; ^ABD = ^EBD
=> tam giác ABD = tam giác EBD ( ch-gn )
=> AB = BE
b) Tam giác BAC vuông tại A
=> ^B+^C = 90 độ
=> ^B = 60 độ (1)
Ta có AB = BE ( câu a )
=> tam giác ABE cân (2)
Từ 1 và 2 => tam giác ABE đều
c) Ta có I là trung điểm của FC
=> I nằm giữa FC ( I thuộng FC )
Mà BD là tia phân giác ^ABC
=> B;D;I thẳng hàng