\(\dfrac{2bc-2016}{3c-2bc+2016}-\dfrac{2b}{3-2b+ab}+\dfrac{4032-3ac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

`(2bc-2016)/(3c-2bc+2016)`

`=(-(3c-2bc+2016)+3c)/(3c-2bc+2016)`

`=-1+(3c)/(3c-2bc+2016)`

`(2b)/(3-2b+ab)

`=(2bc)/(3c-2bc+abc)`

`=(2bc)/(3c-2bc+2016)`

`(4032-3ac)/(3ac-4032+2016a)`

`=(-(3ac-4032+2016a)+2016a)/(3ac-4032+2016a)`

`=-1+(2016a)/(3ac-2abc+2016a)`

`=-1+(2016)/(3c-2bc+2016)`

`=>M=-1+(3c)/(3c-2bc+2016)-(2bc)/(3c-2bc+2016)-1+(2016)/(3c-2bc+2016)

`=>M=-2+(3c-2bc+2016)/(3c-2bc+2016)`

`=>M=-2+1`

`=>M=-1`

28 tháng 2 2021

`(2bc-2016)/(3c-2bc+2016)`

`=(-(3c-2bc+2016)+3c)/(3c-2bc+2016)`

`=-1+(3c)/(3c-2bc+2016)`

`(2b)/(3-2b+ab)`

`=(2bc)/(3c-2bc+abc)`

`=(2bc)/(3c-2bc+2016)`

`(4032-3ac)/(3ac-4032+2016a)`

`=(-(3ac-4032+2016a)+2016a)/(3ac-4032+2016a)`

`=-1+(2016a)/(3ac-2abc+2016a)`

`=-1+(2016)/(3c-2bc+2016)`

`=>M=-1+(3c)/(3c-2bc+2016)-(2bc)/(3c-2bc+2016)-1+(2016)/(3c-2bc+2016)`

`=>M=-2+(3c-2bc+2016)/(3c-2bc+2016)`

`=>M=-2+1`

`=>M=-1`

Nãy thiếu latex ạ sorry~~

3 tháng 3 2020

Ta có:

\(+)\frac{2bc-2016}{3c-2bc+2016}=-1+\frac{3c}{3c-2bc+2016}\left(1\right)\)

\(+)\frac{-2b}{3-2b+ab}=\frac{-2bc}{3c-2bc+abc}=\frac{-2bc}{3c-2bc+2016}\left(2\right)\)

\(+)\frac{4032-3ac}{3ac-4032+2016a}=-1+\frac{2016a}{3ac-2abc+2016a}=-1+\frac{2016}{3c-2bc+2016}\left(3\right)\)

\(P=\left(1\right)+\left(2\right)+\left(3\right)=-1\)

Vậy .........

3 tháng 3 2020

\(P=\left(1\right)-\left(2\right)+\left(3\right)=-1\)

26 tháng 12 2017

\(P=\dfrac{2bc-2016}{3c-2bc+2016}-\dfrac{2b}{3-2b+ab}+\dfrac{4032-3ac}{3ac-4032+2016c}\)
\(=\dfrac{2bc-abc}{3c-2bc+abc}-\dfrac{2b}{3-2b+ab}+\dfrac{2abc-3ac}{3ac-2abc+a^2bc}\)
\(=\dfrac{2b-ab}{3-2b+ab}-\dfrac{2b}{3-2b+ab}+\dfrac{2b-3}{3-2b+ab}\)
\(=\dfrac{2b-ab-2b+2b-3}{3-2b+ab}\)
\(=\dfrac{-3+2b-ab}{3-2b+ab}=-1\).

14 tháng 12 2017

- Nhân cả tử và mẫu phân thức thứ nhất với a

- Nhân cả tử và mẫu phân thức thứ 2 với ac

- Thay abc =2016 ta có mẫu số chung là :

3ac - 4032 +2016a

- Rút gọn => đáp án : -1

29 tháng 11 2020

\(P=\frac{2bc-2016}{3c-2bc+2016}-\frac{2b}{3-2b+ab}-\frac{4032-3ac}{3ac-4032+2016a}\)

Ta rút gọn từng biểu thức

\(+)\frac{2bc-2016}{3c-2bc+2016}=-1+\frac{3c}{3c-2bc+2016}\)

\(+)\frac{-2b}{3-2b+ab}=\frac{-2bc}{3c-2bc+abc}=\frac{-2bc}{3c-2bc+2016}\)

\(+)\frac{4032-3ac}{3ac-4032+2016a}=-1+\frac{2016a}{3ac-2abc+2016a}\)

\(=-1+\frac{2016}{3c-2bc+2016}\)

\(\Rightarrow P=-1\)

4 tháng 5 2017

á mk xl nhá mk ko đọc kĩ đề mk làm nhầm rùi bài mk làm là tìm GTNN nhá bạn ( mất công quábucminh)

4 tháng 5 2017

ta có A= a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)

= \(\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c}{4}+\dfrac{3c}{4}+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)

=\(\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\)

vì a,b,c >0 ===> \(\dfrac{3a}{4}>0,\dfrac{3}{a}>0,\dfrac{b}{2}>0,\dfrac{9}{2b}>0,\dfrac{c}{4}>0,\dfrac{4}{c}>0\)

áp dụng BĐT côsi cho các cặp số dương ta đc:

\(\dfrac{3a}{4}+\dfrac{3}{a}>=2.\sqrt{\dfrac{3a}{4}.\dfrac{3}{a}}=3\)

\(\dfrac{b}{2}+\dfrac{9}{2b}>=3\)(làm như trên nhá)

\(\dfrac{c}{4}+\dfrac{4}{c}>=2\)

===> \(\dfrac{3a}{4}+\dfrac{3}{a}+\dfrac{b}{2}+\dfrac{9}{2b}+\dfrac{c}{4}+\dfrac{4}{c}>=8\left(1\right)\)

có: \(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}=\dfrac{a+2b+3c}{4}\)

mà a+2b+3c >= 20

===> \(\dfrac{a+2b+3c}{4}>=\dfrac{20}{4}=5\)

===> \(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}>=5\left(2\right)\)

từ (1) và(2)===> a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}>=13\)

===> A >= 13

Dấu ''='' xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{3a}{4}=\dfrac{3}{a}\\\dfrac{b}{2}=\dfrac{9}{2b}\\\dfrac{c}{4}=\dfrac{4}{c}\\a+2b+3c=20\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

Vậy Min A=13 <=>\(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

11 tháng 3 2017

bài này tui cũng đang cần

11 tháng 3 2017

hey, do you come from England

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)