K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

\(A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)

\(=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(bc+b+1\right)}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}=1\)

26 tháng 1 2017

cho mình xửa lại một chút nha:tính :  A=\(\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ca+2c+2}\)

23 tháng 12 2017

\(\frac{a}{ab+a+2}\)\(\frac{b}{bc+b+1}\)\(\frac{2c}{ac+2c+2}\)

\(\frac{a}{ab+a+2}\)\(\frac{ab}{a\left(bc+b+1\right)}\)\(\frac{2abc}{ab\left(ac+2c+2\right)}\)

\(\frac{a}{ab+a+2}\)\(\frac{ab}{abc+ab+a}\)\(\frac{2abc}{a^2bc+2abc+2ab}\)

\(\frac{a}{ab+a+2}\)\(\frac{ab}{ab+a+2}\)\(\frac{2}{ab+a+2}\)   (vì  abc = 2  )

\(\frac{ab+a+2}{ab+a+2}\)= 1

25 tháng 12 2017

tại sao lại nhân vs a và ab z bn

9 tháng 12 2018

Sửa đề:

\(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)

\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+2ab+2bc+2ca-\left(ab+bc+ca\right)}\)

\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+ab+bc+ca}\)

\(=a+b+c\left(a^2+b^2+c^2+ab+bc+ca\ne0\right)\)

9 tháng 12 2018

cảm ơn anh để em xem lại