K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Ta có

\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac+c+1}{ac+c+1}=1\)

28 tháng 11 2016

ôi câu hỏi hay có khác j câu này Câu hỏi của Lê Phương Thảo - Toán lớp 8 - Học toán với OnlineMath

16 tháng 12 2015

\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+a}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+a}=\frac{ac+c+1}{ac+c+1}=1\)

8 tháng 1 2017

Ta có:
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{abca}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac+c+1}{ac+c+1}=1\)

Vậy M = 1

8 tháng 1 2017

Thay 2015= abc vào M ta được:

M = \(\frac{abca}{ab+abca+abc}\) + \(\frac{b}{bc+b+abc}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{abca}{ab\left(1+ac+c\right)}\) + \(\frac{b}{b\left(c+1+ac\right)}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{ac}{1+ac+c}\) + \(\frac{1}{c+1+ac}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{1+ac+c}{1+ac+c}\) = 1

Vây M = 1

XONG ! ok

1 tháng 9 2016

Ta có : \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}a+b+c=0\\a=b=c\end{array}\right.\)

Từ đó tính được N