\(\dfrac{8}{27}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

k mk đi

ai k mk 

mk k lại

thanks

AH
Akai Haruma
Giáo viên
9 tháng 9 2018

Lời giải:

Áp dụng BĐT Schur bậc 3:

\(abc\geq (a+b-c)(b+c-a)(c+a-b)\)

\(\Leftrightarrow abc\geq (1-2c)(1-2a)(1-2b)\)

\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\) (thay \(a+b+c=1\) )

\(\Rightarrow abc\geq \frac{4}{9}(ab+bc+ac)-\frac{1}{9}\)

\(\Rightarrow ab+bc+ac-abc\leq \frac{5}{9}(ab+bc+ac)+\frac{1}{9}\)

Theo hệ quả quen thuộc của BĐT AM-GM

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{5}{9}(ab+bc+ac)+\frac{1}{9}\leq \frac{8}{27}\)

\(\Rightarrow ab+bc+ac-abc\leq \frac{8}{27}\) (đpcm)

Dấu bằng xảy ra khi $3a=3b=3c=1$

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

OoO Min min OoO: Em ơi, chị nghĩ đây là cách đơn giản hữu hiệu nhất. Nếu em chưa học Schur thì có thể coi BĐT đó như một "bổ đề" để sử dụng.

Việc chứng minh BĐT Schur đơn giản như sau:

Ta thấy tổng của đôi một các số hạng \(a+b-c, b+c-a, c+a-b\) đều lớn hơn $0$ nên \(a+b-c, b+c-a, c+a-b>0\)

AM-GM:

\((a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2\)

\((a+b-c)(c+a-b)\leq \left(\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2\)

Nhân theo vế và rút gọn thu được đpcm.

8 tháng 8 2018

Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Ta có:

\(VT=\)\(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

\(=\dfrac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}+\dfrac{1+1+a^2}{\left(b^2+c^2+1\right)\left(1+1+a^2\right)}+\dfrac{1+1+b^2}{\left(c^2+a^2+1\right)\left(1+1+b^2\right)}\)

Áp dụng BĐT Bunhiacopski cho mẫu số, ta có:

\(\left(a^2+b^2+c^2\right)\left(1+1+c^2\right)\ge\left(a+b+c\right)^2\)

\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(b+c+a\right)^2\)

\(\left(c^2+a^2+1\right)\left(1+1+b^2\right)\ge\left(c+a+b\right)^2\)

\(\Rightarrow VT\le\dfrac{1+1+c^2}{\left(a+b+c\right)^2}+\dfrac{1+1+a^2}{\left(b+c+a\right)^2}+\dfrac{1+1+b^2}{\left(c+a+b\right)^2}=\dfrac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}\le\dfrac{6+ab+bc+ca}{3\left(ab+bc+ca\right)}=\dfrac{6+3}{3.3}=1\)

\("="\Leftrightarrow a=b=c=1\)

5 tháng 5 2019

bạn làm được bài nảy chưa ? chỉ mình với

2 tháng 8 2018

\(\left\{{}\begin{matrix}\dfrac{1}{a+2}=\dfrac{1}{2}-\dfrac{1}{b+2}+\dfrac{1}{2}-\dfrac{1}{c+2}=\dfrac{b}{2\left(b+2\right)}+\dfrac{c}{2\left(c+2\right)}\ge\sqrt{\dfrac{bc}{\left(b+2\right)\left(c+2\right)}}\\\dfrac{1}{b+2}\ge\sqrt{\dfrac{ca}{\left(c+2\right)\left(a+2\right)}}\\\dfrac{1}{c+2}\ge\sqrt{\dfrac{ab}{\left(a+2\right)\left(b+2\right)}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(\Leftrightarrow abc\le1< \dfrac{9}{8}\)

Đề sai !

Giả sử \(a=b=c=1\) thay vào phương trình đầu thì :

\(\dfrac{1}{1+2}+\dfrac{1}{1+2}+\dfrac{1}{1+2}=1\) ( Thỏa mãn )

Nhưng \(1.1.1< \dfrac{1}{8}\) ( vô lí )

20 tháng 5 2018

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bđt Cauchy ta có :

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :

\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=3\)