\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Chứng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Đặt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) là ( 1)

Ta có : \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)

\(=a+b+c-ab-bc-ca>0\)

\(=a+b+c-\dfrac{c}{ab}-\dfrac{a}{bc}-\dfrac{b}{ac}>0\)

\(\Leftrightarrow a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 2 )

BĐT ( 2 ) đúng . Từ đây ta có thể thấy BĐt ( 1 ) cũng đúng :D

20 tháng 4 2017

Từ (a-1)(b-1)(c-1)>0 (*)

<=>(ab-b-a+1)(c-1)>0

<=> abc-ab-bc+b-ac+a+c-1>0

<=> a+b+c-ab-ac-bc>0

<=> a+b+c-\(\dfrac{abc}{c}-\dfrac{abc}{b}-\dfrac{abc}{a}\)>0

<=> a+b+c - \(\dfrac{1}{c}-\dfrac{1}{b}-\dfrac{1}{a}>0\)

<=> \(a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 1)

(1) đúng => (*) đúng

12 tháng 8 2017

Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)

Ta có

\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)

\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)

Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)

\(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)

Nhân (1), (2), (3) với nhau:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)

12 tháng 8 2017

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)

\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)

Tương tự:

\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)

Nhân (1),(2) và (3) theo vế:

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra khi a=b=c=1/2

4 tháng 8 2017

Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:

\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)

Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)

4 tháng 8 2017

ai tick cho mik , mik tick lại cho !^__<hahanhớ giải câu hỏi nhé ! thanks

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

25 tháng 3 2017

2a)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

\(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

2b)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

24 tháng 3 2017

Bài 1)

Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Giải

Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0

Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)\(\dfrac{1}{x+2y}\)

\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)

Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y

12 tháng 8 2017

Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)

Ta có

\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)

\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)

Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)

\(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)

Nhân (1), (2), (3) với nhau:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)

29 tháng 11 2017

C1:Áp dụng Bất đẳng thức AM-GM ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1^2}{a+b}+\dfrac{1^2}{b+c}+\dfrac{1^2}{c+a}\ge\)

\(\ge\dfrac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\dfrac{9}{2\left(a+b+c\right)}\)

\(\Rightarrow A=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\left(a+b+c\right).\dfrac{9}{2\left(a+b+c\right)}=\dfrac{9}{2}\)Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2: Khai triển

\(A=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\)

\(=1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}\) (bn tự khai triển đầy đủ nha)

Áp dụng BĐT Nesbitt ta có:

\(A=\left(1+1+1\right)+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\ge\)

\(\left(1+1+1\right)+\dfrac{3}{2}=\dfrac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)