K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2015

a2 + b2 + c2 \(\ge\frac{1}{3}\)\(\Rightarrow3.\left(a^2+b^2+c^2\right)\ge1\)\(\Rightarrow3.\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3.\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Rightarrow3.a^2+3.b^2+3.c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Rightarrow2.a^2+2.b^2+2.c^2\ge2ab+2bc+2ac\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

luôn đúng

=> đẳng thức đầu đúng => đpcm

22 tháng 5 2017

nhận thấy nếu áp dụng bất đẳng thức như bình thường thì ta sẽ bị ngược dấu, do đó ta dùng kỹ thuật cauchy ngược dấu

ta có:

\(\dfrac{a^3}{a^2+b^2}\)=a-\(\dfrac{a.b^2}{a^2+b^2}\)\(\ge\)a-\(\dfrac{a.b^2}{2ab}\)=a-\(\dfrac{b}{2}\)

\(\dfrac{b^3}{b^2+1}\)=b-\(\dfrac{b}{b^2+1}\)\(\ge\)b-\(\dfrac{b}{2b}\)=b-\(\dfrac{1}{2}\)

\(\dfrac{1}{a^2+1}\)=1-\(\dfrac{a^2}{a^2 +1}\)\(\ge\)1-\(\dfrac{a^2}{2a}\)=1-\(\dfrac{a}{2}\)

cộng từng vế của bất đẳng thức lại với nhau ta được:

\(\dfrac{a^3}{a^2+b^2}\)+\(\dfrac{b^3}{b^2+1}\)+\(\dfrac{1}{a^2+1}\)\(\ge\)a-\(\dfrac{b}{2}\)+b-\(\dfrac{1}{2}\)+1-\(\dfrac{a}{2}\)=\(\dfrac{a+b+1}{2}\)

15 tháng 12 2016

one piece

18 tháng 12 2016

Em mong cac ban giup cau 2 thoi cung duoc a

27 tháng 2 2017

Theo bất đẳng thức tam giác

\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)

Cộng theo từng vế

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )

27 tháng 2 2017

câu 1: a+b>?

6 tháng 4 2015

cau 2

a^2 +b^2+c^2 +3>=2(a+b+c)

<=> a^2+b^2 +c^2 +3 -2a -2b -2c >=0

<=>(a-1)^2+(b-1)^2+(c-1)^2>=0    (luon đúng)

vậy a^2 +b^2 +c^2 +3 >=2(a+b+c)

6 tháng 4 2015

cau 1

a^2 +b^2 +1>= ab +a +b   (H)

<=> 2a^2 +2b^2 -2a -2b -2ab +2>=0   (nhân cả 2 vế với 2 đồng thời chuyển vế)

<=> (a^2 -2a +1) +(b^2-2b+1 )+(a^2 -2ab+b^2)>=0

<=> (a-1)^2+(b-1)^2 +(a-b)^2>=0    (luon dung)

=>H luôn đung