\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

áp dụng cô si ta có : \(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)

cộng quế theo quế ta có : \(2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)

\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

3 tháng 8 2018

Cách khác :3

\(a+b+c\text{≥}\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

\(2\left(a+b+c\right)\text{≥}2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

\(a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ac}+a\text{ ≥}0\)

\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2\text{≥}0\left(luôn-đg\right)\)

\("="\text{⇔}a=b=c\)

11 tháng 12 2017

Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)

Thật vậy, ta có:

\(a+bc\ge a^2+2a\sqrt{bc}+bc\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)

\(\Leftrightarrow1\ge a+2\sqrt{bc}\)

\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)

Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)

\(\sqrt{c+ab}\ge c+\sqrt{ab}\)

Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

9 tháng 6 2019

Hỏi đáp Toán

6 tháng 7 2019

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+ab+ac+bc}\)

\(=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si :

\(\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)

Chứng minh tương tự với các phân thức còn lại, cộng theo vế ta có :

\(VT\le\frac{\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{ab}{a+c}+\frac{ab}{b+c}\right)}{2}\)

\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

6 tháng 5 2018

\(T=\dfrac{a+b}{\sqrt{ab+c}}+\dfrac{b+c}{\sqrt{bc+a}}+\dfrac{c+a}{\sqrt{ca+b}}\)

\(\odot\) Ta có: \(\dfrac{a+b}{\sqrt{ab+c}}=\dfrac{a+b}{\sqrt{ab+c\left(a+b+c\right)}}=\dfrac{a+b}{\sqrt{\left(b+c\right)\left(a+c\right)}}\)

\(\odot\) Tương tự:

\(\dfrac{b+c}{\sqrt{bc+a}}=\dfrac{b+c}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\dfrac{c+a}{\sqrt{ca+b}}=\dfrac{c+a}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

\(\odot\) Áp dụng bất đẳng thức AM - GM

\(\Rightarrow T=\dfrac{a+b}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\dfrac{b+c}{\sqrt{\left(a+c\right)\left(b+a\right)}}+\dfrac{a+c}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

\(\ge3\sqrt[3]{\dfrac{a+b}{\sqrt{\left(a+c\right)\left(b+c\right)}}\times\dfrac{b+c}{\sqrt{\left(a+c\right)\left(b+a\right)}}\times\dfrac{a+c}{\sqrt{\left(a+b\right)\left(b+c\right)}}}\)

\(=3\)

\(\odot\) Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

6 tháng 7 2019

a) Ta có BĐT:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)

Khi \(a=b=c\)

6 tháng 7 2019

cảm ơn ạ

30 tháng 12 2017

Áp dụng bđt : x^2+y^2+z^2 >= (x+y+z)^2/3 ta có :

\(\frac{\sqrt{b^2+2a^2}}{ab}\)\(\frac{\sqrt{a^2+b^2+a^2}}{ab}\)>= \(\frac{\sqrt{\frac{\left(a+b+a\right)^2}{3}}}{ab}\) = \(\frac{2a+b}{\sqrt{3}ab}\) = \(\frac{2}{\sqrt{3}b}+\frac{1}{\sqrt{3}a}\)

Tương tự : \(\frac{\sqrt{c^2+2b^2}}{bc}\)>= \(\frac{2}{\sqrt{3}c}+\frac{1}{\sqrt{3}b}\) ;    \(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{2}{\sqrt{3}a}+\frac{1}{\sqrt{3}c}\)

=> \(\frac{\sqrt{b^2+2a^2}}{ab}\)\(\frac{\sqrt{c^2+2b^2}}{bc}\)\(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{3}{\sqrt{3}a}+\frac{3}{\sqrt{3}b}+\frac{3}{\sqrt{3}c}\)

\(\frac{3}{\sqrt{3}}\).(1/a+1/b+1/c) = \(\sqrt{3}\).(ab+bc+ca)/abc = \(\sqrt{3}\).abc/abc = \(\sqrt{3}\)

Dấu "=" xảy ra <=> a=b=c=3

=> ĐPCM

k mk nha

30 tháng 12 2017

thanks thiên tai nhá!

14 tháng 10 2018

Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\left(a+b+c\right)^2=9\)(*)   (Do a+b+c = 3)

Ta sẽ c/m BĐT (*) luôn đúng. Thật vậy:

Áp dụng BĐT AM-GM cho 3 số không âm:

\(a^2+\sqrt{a}+\sqrt{a}\ge3\sqrt[3]{a^2\sqrt{a}.\sqrt{a}}=3a\Rightarrow a^2+2\sqrt{a}\ge3a\)

Tương tự: \(b^2+2\sqrt{b}\ge3b;c^2+2\sqrt{c}\ge3c\)

Cộng 3 BĐT trên theo vế thì có: \(a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\left(a+b+c\right)=9\)

=> BĐT (*) luôn đúng với mọi a,b,c > 0 t/m a+b+c=3 => BĐT ban đầu đúng

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\) (đpcm).

Dấu "=" xảy ra <=> a=b=c=1.