\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

     ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

18 tháng 11 2017

a) Gõ link này nha: http://olm.vn/hoi-dap/question/1078496.html

15 tháng 9 2018

Mọi người ơi chỉ =6 thôi nha k phải 66 đâu

15 tháng 9 2018

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

\(\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{6}{2}=3\)(BĐT \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

6 tháng 7 2019

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+ab+ac+bc}\)

\(=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si :

\(\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)

Chứng minh tương tự với các phân thức còn lại, cộng theo vế ta có :

\(VT\le\frac{\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{ab}{a+c}+\frac{ab}{b+c}\right)}{2}\)

\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

30 tháng 12 2017

Áp dụng bđt : x^2+y^2+z^2 >= (x+y+z)^2/3 ta có :

\(\frac{\sqrt{b^2+2a^2}}{ab}\)\(\frac{\sqrt{a^2+b^2+a^2}}{ab}\)>= \(\frac{\sqrt{\frac{\left(a+b+a\right)^2}{3}}}{ab}\) = \(\frac{2a+b}{\sqrt{3}ab}\) = \(\frac{2}{\sqrt{3}b}+\frac{1}{\sqrt{3}a}\)

Tương tự : \(\frac{\sqrt{c^2+2b^2}}{bc}\)>= \(\frac{2}{\sqrt{3}c}+\frac{1}{\sqrt{3}b}\) ;    \(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{2}{\sqrt{3}a}+\frac{1}{\sqrt{3}c}\)

=> \(\frac{\sqrt{b^2+2a^2}}{ab}\)\(\frac{\sqrt{c^2+2b^2}}{bc}\)\(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{3}{\sqrt{3}a}+\frac{3}{\sqrt{3}b}+\frac{3}{\sqrt{3}c}\)

\(\frac{3}{\sqrt{3}}\).(1/a+1/b+1/c) = \(\sqrt{3}\).(ab+bc+ca)/abc = \(\sqrt{3}\).abc/abc = \(\sqrt{3}\)

Dấu "=" xảy ra <=> a=b=c=3

=> ĐPCM

k mk nha

30 tháng 12 2017

thanks thiên tai nhá!

6 tháng 7 2019

Đề thiếu không bạn ?

6 tháng 7 2019

ko bạn, đè như thế