Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{a+b+c}=\frac{a+4b-c}{c}=\frac{b+4c-a}{a}=\frac{c+4a-b}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{1}{a+b+c}=\frac{a+4b-c}{c}=\frac{b+4c-a}{a}=\frac{c+4a-b}{b}\)
\(=\frac{a+4b-c+b+4c-a+c+4a-b}{a+b+c}=\frac{4\left(a+b+c\right) }{a+b+c}=4\)
Có : \(\frac{1}{a+b+c}=4\Leftrightarrow1=4\left(a+b+c\right)\Rightarrow a+b+c=\frac{1}{4}\)
Đến đây tự làm nốt
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{1}{a+b+c}=\frac{a+4b-c+b+4c-a+c+4a-b}{a+b+c}\)
\(=\frac{4\left(a+b+c\right)}{a+b+c}=4\)
\(\Rightarrow\left\{{}\begin{matrix}4c=a+4b-c\\4a=b+4a-a\\4b=c+4a-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5c=a+4b\\5a=b+4c\\5b=c+4a\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
\(P=\left(2+\frac{a}{b}\right)\left(3+\frac{b}{c}\right)\left(4+\frac{c}{a}\right)\)
\(=\left(2+1\right)\left(3+1\right)\left(4+1\right)\)
\(=3.4.5=60\)
Vậy .............
Cái đề thiếu dấu " = " kìa -__-
Lớp 7 gì mà dễ ẹc :))
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Rightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a-5b=-3c\)
\(\Leftrightarrow a-4a=-3c\)
\(\Leftrightarrow-3a=-3c\)
\(\Rightarrow a=c\)
Ta có : \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=8\)
Trừ mỗi vế cho 1, ta có:
\(\frac{b-16a+16c}{4a}=\frac{c-16b+16a}{4b}=\frac{a-16c+16b}{4c}=\frac{a+b+c}{4.\left(a+b+c\right)}=\frac{1}{4}\)(vì a,b,c > 0 nên a+b+c>0)
\(\Leftrightarrow\hept{\begin{cases}b+16c=17a\\c+16a=17b\\a+16b=17c\end{cases}}\Leftrightarrow a=b=c\)
tự thay vào