\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta. 

b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).

chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

2 tháng 9 2018

Đề phải là \(a;b;c>0\) lần sau chú ý mà gõ -_-

Ta có : \(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}\ge2\sqrt{\frac{a^3}{b+c}.\frac{a\left(b+c\right)}{4}}=a^2\)(BĐT Cosi)

Tương tự \(\hept{\begin{cases}\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\\\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\end{cases}}\)

Cộng vế với vế của các BĐT vừa chứng minh lại ta được : 

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{ab+ac+bc}{2}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+ac+bc}{2}\)

\(\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\) (Do \(a^2+b^2+c^2\ge ab+ac+bc\))

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

2 tháng 9 2018

Giả sử: \(a\ge b\ge c\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)

Áp dụng BĐT Chebyshev ta có:

\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{a+b}\)\(\ge\frac{a^2+b^2+c^2}{3}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+c}\right)\)\(=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)

Vậy \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\) Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

4 tháng 5 2019

Ta có:

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\)

Áp dụng BĐT AM-GM cho các số không âm, ta có:

\(1+b^2\ge2b\Rightarrow\frac{1}{1+b^2}\le\frac{1}{2b}\Rightarrow-\frac{1}{1+b^2}\ge-\frac{1}{2b}\)\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\)

\(\Rightarrow\frac{a}{1+b^2}\ge a-\frac{ab}{2}\)

CMTT: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

\(\Rightarrow BĐT\ge a+b+c-\frac{ab+bc+ca}{2}\)\(=3-\frac{ab+bc+ca}{2}\)

Mặt khác ta có:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow3\ge ab+bc+ca\)\(\Leftrightarrow-\frac{3}{2}\le-\frac{ab+bc+ca}{2}\)

\(\Rightarrow BĐT\ge3-\frac{3}{2}=\frac{3}{2}\)(đpcm)

\(''=''\Leftrightarrow a=b=c=1\)

NV
19 tháng 6 2019

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
23 tháng 6 2019

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

14 tháng 5 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2\left(b+c\right)}+\frac{b+c}{4}\ge2\sqrt{\frac{1}{a^2\left(b+c\right)}\cdot\frac{b+c}{4}}=2\cdot\frac{1}{2a}=\frac{1}{a}\)

Tuong tu cho 2 BDT con lai ta cung co

\(\frac{1}{b^2\left(a+c\right)}+\frac{a+c}{4}\ge\frac{1}{b};\frac{1}{c^2\left(a+b\right)}+\frac{a+b}{4}\ge\frac{1}{c}\)

Cong theo ve cac BDT tren ta co

\(VT+\frac{2\left(a+b+c\right)}{4}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow VT+\frac{a+b+c}{2}\ge3\sqrt[3]{\frac{1}{abc}}=3\left(abc=1\right)\)

\(\Rightarrow VT+\frac{3\sqrt[3]{abc}}{2}\ge3\Rightarrow VT+\frac{3}{2}\ge3\Rightarrow VT\ge\frac{3}{2}\)

Dang thuc xay ra khi \(a=b=c=1\)

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

28 tháng 11 2017

Ta chứng minh:

\(\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)

\(\Leftrightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}\)

\(\Leftrightarrow2a^2\left(1-a^2\right)\left(1-a^2\right)\le\frac{8}{27}\)

Ta có: \(VT\le\frac{\left(2a^2+1-a^2+1-a^2\right)^3}{27}=\frac{8}{27}\)

\(\Rightarrow DPCM\)

Quay lại bài toán ta có:

\(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}=\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\)

\(\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)

28 tháng 11 2017

Vì \(a^2+b^2+c^2=1\Rightarrow\frac{3\sqrt{3}}{2}=\frac{3\sqrt{3}}{2\sqrt{a^2+b^2+c^2}}\)

Tức cần chứng minh \(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2\sqrt{a^2+b^2+c^2}}\)

BĐT trên thuần nhất nên ta chuẩn hoá \(a^2+b^2+c^2=3\)

\(BDT\Leftrightarrow\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{3-a^2}-\frac{1}{2}+\frac{b}{3-b^2}-\frac{1}{2}+\frac{c}{3-c^2}-\frac{1}{2}-\frac{a^2+b^2+c^2}{2}+\frac{3}{2}\ge0\)

\(\Leftrightarrow\left(\frac{a}{3-a^2}-\frac{1}{2}-\frac{1}{2}\left(a^2-1\right)\right)+\left(\frac{b}{3-b^2}-\frac{1}{2}-\frac{1}{2}\left(b^2-1\right)\right)+\left(\frac{c}{3-c^2}-\frac{1}{2}-\frac{1}{2}\left(c^2-1\right)\right)\ge0\)

\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{6-2a^2}+\frac{b\left(b+2\right)\left(b-1\right)^2}{6-2b^2}+\frac{c\left(c+2\right)\left(c-1\right)^2}{6-2c^2}\ge0\) *ĐÚNG*

5 tháng 11 2016

Câu 1: a)

b) Áp dụng Bđt Holder ta có:

\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Rightarrow\frac{a^3+b^3+c^3}{3}\ge\frac{\left(a+b+c\right)^3}{27}=\left(\frac{a+b+c}{3}\right)^3\)(đpcm)

Dấu = khi a=b=c

Câu 2:

Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+1+1}=\frac{4}{3}\)(Đpcm)

Dấu = khi \(a=b=\frac{1}{2}\)

Câu 3:

Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\left(a+b+c=1\right)\)(Đpcm)

Dấu = khi \(a=b=c=\frac{1}{3}\)

Câu 4: nghĩ sau