Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c

BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )
Vậy.......

Từ giả thiết ta có \(1+c^2=ab+bc+ac+c^2=\left(a+c\right)\left(b+c\right)\) ; \(1+a^2=ab+bc+ac+a^2=\left(a+b\right)\left(a+c\right)\)
\(1+b^2=ab+bc+ac+b^2=\left(b+a\right)\left(b+c\right)\)
Suy ra \(\frac{a+b}{1+c^2}+\frac{b+c}{1+a^2}+\frac{c+a}{1+b^2}=\frac{a+b}{\left(c+a\right)\left(c+b\right)}+\frac{b+c}{\left(a+b\right)\left(a+c\right)}+\frac{c+a}{\left(b+a\right)\left(b+c\right)}\)
\(=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Theo BĐT Cauchy , ta có : \(\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(a+b\right)^2}{\left(a+b+b+c+c+a\right)^3}=\frac{27\left(a+b\right)^2}{8\left(a+b+c\right)^3}\)
Tương tự : \(\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(b+c\right)^2}{8\left(a+b+c\right)^3}\) ; \(\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(c+a\right)^2}{8\left(a+b+c\right)^3}\)
\(\Rightarrow\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9}{8\left(a+b+c\right)^3}.3\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]\)
\(\ge\frac{9}{8\left(a+b+c\right)^3}.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2\) (Áp dụng BĐT Bunhiacopxki)
\(=\frac{9.4\left(a+b+c\right)^2}{8\left(a+b+c\right)^3}=\frac{9}{2\left(a+b+c\right)}\) (đpcm)

3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

Áp dụng bđt Bunhia-cốp-xki ở dạng phân thức, ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\dfrac{9}{2}\)( vì a+b+c=1)
Dấu bằng xảy ra \(\Leftrightarrow\dfrac{1}{a+b}=\dfrac{1}{b+c}=\dfrac{1}{c+a}\Leftrightarrow a+b=b+c=c+a\Leftrightarrow a=b=c=\dfrac{1}{3}\)(vì a+b+c=1)

Ta có: \(a,b,c>0\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{\left(1+1+1\right)^2}{a+b+c+a+b+c}=\frac{3^2}{2\left(a+b+c\right)}=\frac{9}{2.1}=\frac{9}{2}\)
đpcm
Tham khảo nhé~
kudo shinichi nêú dùng kỹ thuật ghép cặp nghịch đảo cho 3 số thì sao bn

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
áp dụng bđt Bunyakovsky dạng phân thức ta có ngay :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}\)
đẳng thức xảy ra <=> a = b = c = 1/3
vậy ta có đpcm