Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
áp dụng bất đẳng thức: (a+b+c)^2<=3(a^2+b^2+c^2):
[√(4a+1)+√(4b+1)+√(4c+1)]^2
<= 3[4(a+b+c)+3]=21<25
=>√(4a+1)+√(4b+1)+√(4c+1)<5
cosi : \(\sqrt{4a+1}\)\(\sqrt{1}\)<\(\frac{4a+1+1}{2}\)= 2a + 1. tương tự \(\sqrt{4b+1}\)\(\sqrt{1}\)<\(\frac{4b+1+1}{2}\)= 2b + 1; \(\sqrt{4c+1}\)\(\sqrt{1}\)<\(\frac{4c+1+1}{2}\)= 2c + 1. Nên VT < 2(a+b+c) +3 = 5. Dấu = xảy ra khi và chỉ khi a=b=c = 1/3
a) \(BĐT\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\sqrt{\frac{c\left(a-c\right)}{ab}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)
\(\Leftrightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le1\)
Áp dụng AM-GM:\(VT\le\frac{1}{2}\left(\frac{c}{b}+1-\frac{c}{a}+\frac{c}{a}+1-\frac{c}{b}\right)=1\left(đpcm\right)\)
Dấu = xảy ra khi (a+b).c=ab
b) \(2+b+c+2+b+c\ge2\sqrt{\left(b+1\right)\left(c+1\right)}+2+b+c=\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge4\left(1+a\right)\)
\(\Leftrightarrow b+c\ge2a\)
cau a) dung cosi
\(\sqrt{c\left(a-c\right)}\le\frac{a-c+c}{2}\) ap dung cosi cho hai so c va a-c
tuong tu voi cac so khac
\(BT\le\frac{a-c+c}{2}+\frac{b-c+c}{2}-\frac{a+b}{2}\)(bt la VT cua de)
=> DPCM
b)
dung cosi nhu cau a
lam nhanh luon
\(\sqrt{1+b}\ge\frac{b+1+1}{2}\)
tuong tu
\(BT\ge\frac{b+2}{2}+\frac{c+2}{2}\ge a+2\)
<=> b+c>=2a
Theo BĐT Bu - nhi - a - cốp - xki ta có :
\(\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+1+b+1+c+1\right)=3.4=12\)
\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\sqrt{12}=2\sqrt{3}\)
Dấu \("="\) xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Vậy đẳng thức đã được chứng minh
Chúc bạn học tốt
Ta c/m 1) \(c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a,b>0\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
2) \(a,b>0\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Thật vậy ĐK: a+c>0, b+c>0 mà c<0 \(\Rightarrow a,b>0\)
\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)
\(\Rightarrow-c=\sqrt{\left(a+c\right)\left(b+c\right)}\Rightarrow\hept{\begin{cases}c< 0\\c^2=ab+ac+bc+c^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c< 0\\ab+bc+ca=0\end{cases}\Rightarrow\hept{\begin{cases}c< 0\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}}\)
\(\Rightarrow\)đpcm
2) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\)mà \(a,b>0\Rightarrow c< 0\)
\(\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\Rightarrow c=\frac{-ab}{a+b}\)
\(\Rightarrow\hept{\begin{cases}a+c=a-\frac{ab}{a+b}=\frac{a^2}{a+b}\\b+c=b-\frac{ab}{a+b}=\frac{b^2}{a+b}\end{cases}}\)
\(\Rightarrow\sqrt{a+c}+\sqrt{b+c}=\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{a+b}}=\frac{a+b}{\sqrt{a+b}}=\sqrt{a+b}\)
\(\Rightarrow\)Đpcm
\(P=\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\)
\(\frac{2}{\sqrt{3}}P=\frac{2}{\sqrt{3}}.\sqrt{a+1}+\frac{2}{\sqrt{3}}.\sqrt{b+1}+\frac{2}{\sqrt{3}}.\sqrt{c+1}\)
\(\le\frac{\frac{4}{3}+a+1}{2}+\frac{\frac{4}{3}+b+1}{2}+\frac{\frac{4}{3}+c+1}{2}\)
\(=\frac{7}{2}+\frac{1}{2}=4\)
\(\Rightarrow P\le\frac{4.\sqrt{3}}{2}=2\sqrt{3}< 3,5\)