\(\frac{1}{a^2+b^2+1}+\frac{1}{a^2+c^2+1}+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 6 2019

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\) \(\Rightarrow xyz=1\)

Ta có BĐT quen thuộc: \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow P=\sum\frac{xyz}{x^3+y^3+xyz}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

\("="\Leftrightarrow a=b=c=1\)

21 tháng 6 2019

Ai có cách nào khác với anh Nguyễn Việt Lâm không mọi người ?

20 tháng 6 2019

Cho a = 1; b = 2; c= 1/2 suy ra suy ra VT = 101/126 < 1?

20 tháng 6 2019

Agami Raito đề sai nha bạn, mình có đề khác cũng gần giống, bạn xem thử :

\(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{a^3+c^3+1}\le1\)

Giả thiết như trên nhé

2 tháng 12 2018

Ta có:\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

Để \(a^2+b^2+c^2=\frac{5}{3}\) thì \(ab+bc+ca=0\)

Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ca}{abc}+\frac{ab}{abc}=\frac{bc+ca+ab}{abc}\)

Thay ab + bc + ca = 0 vào,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ca+ab}{abc}=\frac{0}{abc}=0\)

Mà a,b,c > 0 nên abc > 0 do đó \(\frac{1}{abc}>0\) hay \(\frac{1}{abc}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{abc}\) 

Suy ra đpcm.

2 tháng 12 2018

bn ơi tại sao ab+bc+ac=0

mk k hiểu chỗ đó

31 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{1+b^2}=a-\frac{a^2b}{b^2+1}\ge a-\frac{a^2b}{2b}=a-\frac{ab}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Xảy ra khi \(a=b=c=1\)

31 tháng 7 2017

tc \(x^2+y^2\ge2xy\left(cauchy\right)\)

\(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)-ab}{1+b^2}=a-\frac{ab}{1+b^2}\ge a-\frac{ab}{2ab}\ge a-\frac{1}{2}\)(1)

tương tự \(\frac{b}{1+c^2}\ge b-\frac{1}{2}\)(2)

\(\frac{c}{1+a^2}\ge c-\frac{1}{2}\)(3)

từ (1)(2)(3)=> \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{3}{2}=3-\frac{3}{2}=\frac{3}{2}\left(a+b+c=3\right)\)

=> đpcm

22 tháng 11 2015

sorry, em mới học lớp 6 thui

22 tháng 11 2015

mẹ ơi con chưa thấy dạng nào thế này

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z