Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(a^{2017}\left(a^2-8a+11\right)+b^{2017}\left(b^2-8b+11\right)=\)\(a^{2017}\left(a^2-8a+16-5\right)+b^{2017}\left(b^2-8b+16-5\right)=\)\(a^{2017}\left(\left(a-4\right)^2-\sqrt{5^2}\right)+b^{2017}\left(\left(b-4\right)^2-\sqrt{5^2}\right)\)=\(a^{2017}\left(a-4-\sqrt{5}\right)\left(a-4+\sqrt{5}\right)+b^{2017}\left(b-4-\sqrt{5}\right)\left(b-4+\sqrt{5}\right)\)= 0+0= 0
EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath
Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b
=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)
và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)
Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)
\(a^{2019}+a^{2019}+1+1+...+1\ge2019a^2\) (2017 số 1)
\(\Leftrightarrow2a^{2019}+2017\ge2019a^2\)
Tương tự: \(2b^{2019}+2017\ge2019b^2\) ; \(2c^{2019}+2017\ge2019c^2\)
Cộng vế với vế:
\(2\left(a^{2019}+b^{2019}+c^{2019}\right)+2017.3\ge2019\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^{2019}+b^{2019}+c^{2019}\ge\frac{2019\left(a^2+b^2+c^2\right)-2017.3}{2}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
*Biết là muộn rồi nhưng vẫn cứ gửi lời giải ra đây vậy*
Từ giả thiết suy ra \(2019=\frac{1}{a+b+c}\)
⇒ \(ab+bc+ca=\frac{abc}{a+b+c}\)⇒ \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
⇒ \(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)
⇒ \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
⇒ Trong ba số a, b, c có hai số đối nhau. Không mất tính tổng quát giả sử đó là a và b
⇒ \(c=\frac{1}{2019}\)
⇒ \(A=\frac{1}{2019^{2019}}\)
Ta có: \(a^2+2019=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự ta có : \(b^2+2019=\left(a+b\right)\left(b+c\right)\)
\(c^2+2019=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(b+c\right)}\)\(=\frac{\left(a^2-bc\right)\left(b+c\right)+\left(b^2-ac\right)\left(a+c\right)+\left(c^2-ab\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)\(=\frac{a^2b-b^2c+a^2c-bc^2+ab^2-a^2c+b^2c-ac^2+ac^2+bc^2-a^2b-ab^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=0\)\(\Rightarrow dpcm\)
\(\text{Thay }ab+bc+ac=2019\text{ vào biểu thức trên, ta có: }\)
\(\frac{a^2-bc}{a^2+ab+bc+ac}+\frac{b^2-ac}{b^2+ab+bc+ac}+\frac{c^2-ab}{c^2+ab+bc+ac}\)
\(=\frac{\left(a^2-bc\right).\left(b+c\right)}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}+\frac{\left(b^2-ac\right).\left(a+c\right)}{\left(a+b\right).\left(b+c\right).\left(a+c\right)}+\frac{\left(c^2-ab\right).\left(a+b\right)}{\left(a+c\right).\left(b+c\right).\left(a+b\right)}\)
\(=\frac{a^2b+a^2c-b^2c-bc^2+b^2a+b^2c-a^2c-ac^2+c^2a+c^2b-a^2b-ab^2}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}=0\)
Vậy...
Ta thấy : \(a+b+c=1\Rightarrow a,b,c< 1\)
Lại có : \(a+b+c=a^3+b^3+c^3\)
\(\Rightarrow a+b+c-a^3-b^3-c^3=0\)
\(\Rightarrow a.\left(1-a^2\right)+b.\left(1-b^2\right)+c.\left(1-c^2\right)=0\) (*)
Do : \(a,b,c< 1\Rightarrow\left\{{}\begin{matrix}1-a^2>0\\1-b^2>0\\1-c^2>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a.\left(1-a^2\right)\ge0\\b.\left(1-b^2\right)\ge0\\c.\left(1-c^2\right)\ge0\end{matrix}\right.\) mà (*) nên ta có :\(\left\{{}\begin{matrix}a.\left(1-a^2\right)=0\\b.\left(1-b^2\right)=0\\c.\left(1-c^2\right)=0\end{matrix}\right.\)
Theo bài có \(a+b+c=a^3+b^3+c^3\)
nên : \(\left(a,b,c\right)\in\left\{\left(1,0,0\right),\left(0,1,0\right),\left(0,0,1\right)\right\}\)
Trong cả ba trường hợp trên thì \(M=1\)
Vậy : \(M=1\) với \(a,b,c\) thỏa mãn đề.