![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bổ đề : \(x^3+y^3\ge xy\left(x+y\right)=x^2y+xy^2\)
C/m bổ đề : \(x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)
Vậy bổ đề đúng .
Áp dụng vào bài toán
\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)
Ta có : \(x^3+y^3+1\ge xy\left(x+y\right)+1=xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
\(\Leftrightarrow\dfrac{1}{x^3+y^3+1}\le\dfrac{xyz}{xy\left(x+y+z\right)}=\dfrac{z}{x+y+z}\)
Chứng minh tương tự ta được : \(\dfrac{1}{y^3+z^3+1}\le\dfrac{x}{x+y+z}\)
\(\dfrac{1}{z^3+x^3+1}\le\dfrac{y}{x+y+z}\)
Cộng từng về ta được :
\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\ge\dfrac{x+y+z}{x+y+z}=1\)
=> ĐPCM .
![](https://rs.olm.vn/images/avt/0.png?1311)
Đầu tiên ta cm:\(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+\left(-a-b\right)^3=3abc\)
\(\Leftrightarrow a^3+b^3-a^3-3a^2b-3ab^2-b^3=3abc\)
\(\Leftrightarrow-3a^2b-3ab^2=3abc\)
\(\Leftrightarrow-3ab\left(a+b\right)=3abc\)
\(\Leftrightarrow-3ab\cdot\left(-c\right)=3abc\)(đúng)
Áp dụng:\(\Rightarrow xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=xyz\cdot\dfrac{3}{xyz}=3\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) \(\dfrac{\Rightarrow1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=a+b+c=0\)
cơ bản \(\left(a+b+c\right)=0\Rightarrow a^3+b^3+c^3=3abc\)
\(\Rightarrow x.y.z\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{1}{abc}.\left(a^3+b^3+c^3\right)=\dfrac{1}{abc}\left(3abc\right)=3=>dpcm\Leftrightarrow dccm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(=\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{y^2}{6}+\dfrac{y^2}{6}+\dfrac{y^2}{6}+\dfrac{z^3}{6}+\dfrac{z^3}{6}\)
\(\ge11.\sqrt[11]{\dfrac{x^6}{6^6}.\dfrac{y^6}{6^3}.\dfrac{z^6}{6^2}}=11.\sqrt[11]{\dfrac{\left(xyz\right)^6}{6^{11}}}=11.\sqrt[11]{\dfrac{1}{6^{11}}}=\dfrac{11}{6}\)
Vậy GTNN là \(A=\dfrac{11}{6}\)đạt được khi \(x=y=z=1\)
PS: Bài này nhé. Bài trước nhầm 1 chỗ. Mà kệ đừng xem bài trước làm gì nhé e.
Ta có:
\(=\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{y^2}{6}+\dfrac{y^2}{6}+\dfrac{y^2}{6}+\dfrac{z^3}{6}+\dfrac{z^3}{6}\)
\(\ge11.\sqrt[11]{\dfrac{x^6}{6^6}.\dfrac{y^6}{6^3}.\dfrac{z^6}{2^6}}=11.\sqrt[11]{\dfrac{\left(xyz\right)^6}{6^{11}}}=11.\dfrac{xyz}{6}=\dfrac{11}{6}\)
Vậy GTNN là \(A=\dfrac{11}{6}\)đạt được khi \(x=y=z=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a : Ta có : \(x^3+x^2z+y^2z-xyz+y^3=0\)
\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow x+y+z=0\) ( đpcm )
Câu b : \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
Câu c : Ta có : \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a+b+c=0\) ( đúng )
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y
Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
Vậy ta suy ra đpcm
b) Ta có: a+b>c;b+c>a;a+c>b
Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
.Tương tự:
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy ta có đpcm
6) Ta có:
\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)
\(ab+cd=ab+\dfrac{1}{ab}\ge2\)
Suy ra đpcm
Lời giải:
Sửa lại đề: Tính $A=\frac{a^3+b^3+c^3}{-abc}$
Do $a+b+c=0\Rightarrow a+b=-c$
Ta có:
$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc$
Khi đó:
$A=\frac{3abc}{-abc}=-3$