Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+b\ge2\sqrt{\frac{4\left(a-b\right)}{\left(a-b\right)\left(b+1\right)^2}}+b=\frac{4}{b+1}+b\)
\(B\ge\frac{4}{b+1}+b+1-1\ge2\sqrt{\frac{4\left(b+1\right)}{b+1}}-1=3\)
\(B_{min}=3\) khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
Câu C bạn coi lại đề, khi a>b>1 thì ko có min, a>b>0 mới có min
\(ab+a+b=\frac{5}{4}\Rightarrow\frac{a^2+b^2}{2}+\sqrt{2\left(a^2+b^2\right)}\ge\frac{5}{4}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
\(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{3}{\sqrt[3]{a^2b^2c^2}}\Rightarrow\sqrt[3]{a^2b^2c^2}\ge3\Rightarrow a^2b^2c^2\ge27\)
\(A=1+a^2b^2c^2+a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)
\(A\ge1+27+3\sqrt[3]{a^2b^2c^2}+3\left(\sqrt[3]{a^2b^2c^2}\right)^2\)
\(A\ge1+27+3.3+3.3^2=...\)
Dấu "=" xảy ra khi \(a=b=c=...\)
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
\(A\ge7\left(a+b+c\right)^2+12\left(a+b+c\right)^2+\frac{18135}{a+b+c}\)
Đặt \(a+b+c=x\Rightarrow0< x\le2\)
\(A\ge19x^2+\frac{18135}{x}=19x^2+\frac{152}{x}+\frac{152}{x}+\frac{17831}{x}\)
\(A\ge3\sqrt[3]{\frac{19.152.152x^2}{x^2}}+\frac{17831}{2}=\frac{18287}{2}\)
1) Áp dụng BĐT AM-GM: \(VT\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9=VP\)
Đẳng thức xảy ra khi $a=b=c.$
2) Từ (1) suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{3^2}{a+b+c}+\frac{1^2}{d}\ge\frac{\left(3+1\right)^2}{a+b+c+d}=VP\)
Đẳng thức..
3) Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) với $a,b,c>0.$
Cho $c=1$ ta nhận được bất đẳng thức cần chứng minh.
4) Đặt \(a=x^2,b=y^2,S=x+y,P=xy\left(S^2\ge4P\right)\) thì cần chứng minh $$(x+y)^8 \geqq 64x^2 y^2 (x^2+y^2)^2$$
Hay là \(S^8\ge64P^2\left(S^2-2P\right)^2\)
Tương đương với $$(-4 P + S^2)^2 ( 8 P S^2 + S^4-16 P^2 ) \geqq 0$$
Đây là điều hiển nhiên.
5) \(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\left(\frac{7}{2}b^3\right)^2}=3\sqrt[3]{\frac{147}{4}}ab^2>9ab^2=VP\)
6) \(VT=\sqrt[4]{\left(\sqrt{a}+\sqrt{b}\right)^8}\ge\sqrt[4]{64ab\left(a+b\right)^2}=2\sqrt{2\left(a+b\right)\sqrt{ab}}=VP\)
Có thế thôi mà nhỉ:v
\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)
\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\frac{a^3}{\left(1-a\right)^2}+\frac{1-a}{8}+\frac{1-a}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1-a\right)^2}.\frac{\left(1-a\right)}{8}.\frac{1-a}{8}}=\frac{3a}{4}\)
Suy ra \(\frac{a^3}{1-a^2}\ge\frac{3a}{4}-\frac{\left(1-a\right)}{4}=\frac{4a-1}{4}\)
Tương tự hai BĐT còn lại rồi cộng theo vế:
\(A\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến
Bạn tham khảo:
Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến