\(ab^2+bc^2+ca^2<4\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5

7. Toán: Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm giá trị lớn nhất của ab^2 + bc^2 + ca^2

Gợi ý giải:
Áp dụng bất đẳng thức Cauchy-Schwarz hoặc thử giá trị đặc biệt (ví dụ a = b = c hoặc cho một biến tiến về 0) để tìm giá trị lớn nhất.


1 tháng 11 2017

Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}\Leftrightarrow bc=ab\Rightarrow a=c\)(1)

Tương tựi ta cũng có : \(\hept{\begin{cases}a=b\\b=c\end{cases}}\)(2)

Từ (1);(2) \(\Rightarrow a=b=c\)Thay vào M ta được :\(M=\frac{a.a+a.a+a.a}{a^2+b^2+c^2}=1\)

30 tháng 10 2017

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)

\(\Rightarrow\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=b=c=a\)

\(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)

23 tháng 12 2016

Ta có

Lập luận ra đpcm

23 tháng 12 2016

Ta có :

a^xyz=(a^x)^yz=(bc)^yz

=b^yz.c^yz

=(b^y)^z.(c^z)^y

=(ca)^z.(ab)^y

=c^z.a^z.a^y.b^y

=(bc).a^z.a^y.(ca)

=a^2.a^y.a^z.(bc)

=a^2.a^y.a^z.a^x

=a^(x+y+z+2)

=>xyz=x+y+z+2

21 tháng 1 2019

Tu \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

Hay \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow a=b=c\)

Thay vao M ta co: \(M=\dfrac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\dfrac{2019}{2019}=\dfrac{2018}{2018}=\dfrac{2017}{2017}=\dfrac{2016}{2015+1}=1\)

22 tháng 1 2019

Cảm ơn bạn nhé.
Bạn cho mình hỏi, làm sao ra được \(\dfrac{2019}{2019}\)vậy ạ?

tích mình đi

ai tích mình

mình tích lại

thanks

15 tháng 7 2019

Câu hỏi của Đỗ Thanh Uyên - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo

12 tháng 1 2019

🤦‍♀️🤦‍♀️