Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng chứng minh được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)
Ta có:
\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)
Áp dụng (1), ta được:
\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)
\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)
Chúng minh tương tự, ta được:
\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)
Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).
\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)
Từ (2), (3) và (4), ta được:
\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)
\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)
\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)
Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)
Ta có: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2ab+2bc+2ac=2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow\left(1\right)\)xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
\(\Rightarrow M=ab+bc+ca-\left(a+b+c\right)+1=3a^2-3a+1\)
\(=\left(\sqrt{3}a\right)^2-2.\sqrt{3}a.\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}\)
\(=\left(\sqrt{3}a-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
(Dấu "=" \(\Leftrightarrow\sqrt{3}a-\frac{\sqrt{3}}{2}=0\Leftrightarrow a=\frac{1}{2}\)
hay \(a=b=c=\frac{1}{2}\)
Vậy \(M_{min}=\frac{1}{4}\Leftrightarrow a=b=c=\frac{1}{2}\)
giả thiết \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (biến đổi tương đương)
Thay xuống: \(M=3a^2-3a+1=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Đẳng thức xảy ra khi \(a=\frac{1}{2}\)
P/s; hướng làm là đưa về 1 biến như vậy đó, khi tính toán có thể có sai số, bạn tự check lại.
\(\left(a+b+c\right)\left(ab+ac+bc\right)=\left(a+b+c\right)\left(ab+ac+bc+c^2-c^2\right)\)
\(=\left(a+b+c\right)\left(\left(a+c\right)\left(b+c\right)-c^2\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2\left(a+b\right)+c\left(a+c\right)\left(b+c\right)-c^3\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2a-c^2b+abc+c^2a+c^2b+c^3-c^3\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)+abc=\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018\)
\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018=2018\)
\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
Ta có:
\(A=\left(b^2c+2018\right)\left(c^2a+2018\right)\left(a^2b+2018\right)\)
\(A=\left(b^2c+abc\right)\left(c^2a+abc\right)\left(a^2b+abc\right)\)
\(A=bc\left(a+b\right)ac\left(b+c\right)ab\left(a+c\right)\)
\(A=\left(abc\right)^2\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(A=2018^2.0=0\)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
\(1,VT=2\left(a^3+b^3+c^3\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Ta có \(a^3+b^3\ge ab\left(a+b\right)\)
\(b^3+c^3\ge bc\left(b+c\right)\)
\(c^3+a^3\ge ca\left(c+a\right)\)
Cộng từng vế các bđt trên ta được
\(VT\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Bây giờ ta cm:
\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
Bất đẳng thức trên luôn đúng
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c
\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+abc^2+a^2bc\right)=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow2\left(ab^2c+abc^2+a^2bc\right)=0\\ \Leftrightarrow abc\left(a+b+c\right)=0\left(đpcm;a+b+c=0\right)\)
Lời giải:
Xét
\((a+b+c)(a^2+b^2+c^2)=(a^3+b^3+c^3+ab^2+bc^2+ca^2)+a^2b+b^2c+c^2a\)
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} a^3+ab^2\geq 2a^2b\\ b^3+bc^2\geq 2b^2c\\ c^3+ca^2\geq 2c^2a\end{matrix}\right.\) \(\Rightarrow (a+b+c)(a^2+b^2+c^2)\geq 3(a^2b+b^2c+c^2a)\)
\(\Leftrightarrow a^2b+b^2c+c^2a\leq \frac{a^2+b^2+c^2}{3}\) (do \(a+b+c=1\))
Do đó, \(A\geq 14(a^2+b^2+c^2)+\frac{3(ab+bc+ac)}{a^2+b^2+c^2}\)
\(\Leftrightarrow A\geq 14[(a+b+c)^2-2(ab+bc+ac)]+\frac{3(ab+bc+ac)}{(a+b+c)^2-2(ab+bc+ac)}\)
\(\Leftrightarrow A\geq 14-28(ab+bc+ac)+\frac{3(ab+bc+ac)}{1-2(ab+bc+ac)}\)
Đặt \(ab+bc+ac=t\)
Theo AM-GM thì \(ab+bc+ac\leq\frac{(a+b+c)^2}{3}\Leftrightarrow t\leq \frac{1}{3}\Rightarrow t\in (0,\frac{1}{3}]\)
Ta có: \(A\geq 14-28t+\frac{3t}{1-2t}\)
Ta sẽ cm rằng \(14-28t+\frac{3t}{1-2t}\geq \frac{23}{3}\Leftrightarrow \frac{14(1-2t)^2+3t}{1-2t}\geq \frac{23}{3}\)
\(\Leftrightarrow 168t^2-159t+42\geq 23-46t\)
\(\Leftrightarrow (3t-1)(56t-19)\geq 0\) \((\star)\)
Vì \(t\leq \frac{1}{3}\Rightarrow 3t-1,56t-19\leq 0\Rightarrow (3t-1)(56t-19)\geq 0\)
Do đó \((\star)\) đúng kéo theo \(14-28t+\frac{3t}{1-2t}\geq \frac{23}{3}\Rightarrow A\geq \frac{23}{3}\)
Vậy \(A_{\min}=\frac{23}{3}\Leftrightarrow a=b=c=\frac{1}{3}\)