\(\dfrac {a}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 4 2019

\(H=\frac{a^2}{2017a^2+a}+\frac{b^2}{2017b^2+b}+\frac{c^2}{2017c^2+c}\ge\frac{\left(a+b+c\right)^2}{2017\left(a^2+b^2+c^2\right)+\left(a+b+c\right)}\)

\(H\ge\frac{\left(a+b+c\right)^2}{2017.\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)}=\frac{1}{\frac{2017}{3}+1}=\frac{3}{2020}\)

\(\Rightarrow H_{max}=\frac{3}{2020}\) khi \(a=b=c=\frac{1}{3}\)

28 tháng 4 2019

Thanks bạn nha

7 tháng 6 2020

b) \(\frac{8-y}{y-7}+\frac{1}{7-y}=8\)

ĐKXĐ: \(x\ne7\)

\(\Leftrightarrow\frac{\left(8-y\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}+\frac{y-7}{\left(y-7\right)\left(7-y\right)}=\frac{8\left(y-7\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}\)

\(\Rightarrow56-15y+y^2+y-7=112y-8y^2-392\)

\(\Leftrightarrow49-14y+y^2=112y-8y^2-392\)

\(\Leftrightarrow9y^2-126y+441=0\)

\(\Leftrightarrow9\left(y^2-14y+49\right)=0\)

\(\Leftrightarrow\left(y-7\right)^2=0\)

\(\Leftrightarrow y-7=0\)

\(\Leftrightarrow y=7\left(Loại\right)\)

Vậy không có giá trị nào để biểu thức \(\frac{8-y}{y-7}+\frac{1}{7-y}\) có giá trị bằng 8.

7 tháng 6 2020

a) \(\frac{y-1}{y-2}-\frac{y+3}{y-4}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)

ĐKXĐ: \(y\ne2;y\ne4\)

\(\Leftrightarrow\frac{\left(y-1\right)\left(y-4\right)}{\left(y-2\right)\left(y-4\right)}-\frac{\left(y+3\right)\left(y-2\right)}{\left(y-2\right)\left(y-4\right)}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)

\(\Rightarrow y^2-5y+4-y^2-y+6=-2\)

\(\Leftrightarrow10-6y=-2\)

\(\Leftrightarrow-6y=-12\)

\(\Leftrightarrow y=2\left(Loại\right)\)

Vậy không có giá trị nào của y để biểu thức \(\frac{y-1}{y-2}-\frac{y+3}{y-4}\)\(\frac{-2}{\left(y-2\right)\left(y-4\right)}\) có giá trị bằng nhau.

19 tháng 7 2017

Bài 2:
Ta có: \(f\left(a\right)=6a^5-10a^4-5a^3+23a^2-29a+2005\)

\(=\left(6a^5-10a^4-2a^3\right)-\left(3a^3-5a^2-a\right)+\left(18a^2-30a-6\right)+2011\)

\(=2a^3\left(3a^2-5a-1\right)-a\left(3a^2-5a-1\right)+6\left(3a^2-5a-1\right)+2011\)

\(=\left(2a^3-a+6\right)\left(3a^2-5a-1\right)+2011\)

\(3a^2-5a-1=0\)

\(\Rightarrow f\left(a\right)=2011\)

Vậy...

26 tháng 9 2019

Sai thì bỏ qua ( bạn bè mà ) !

Nếu \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(\Rightarrow\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-1-1-1=-3\)(vô lí )

\(\Rightarrow a+b+c\ne0\)

Ta có : 

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=a+b+c\)

Đặt a + b + c = H 

\(\Rightarrow\frac{a^2}{b+c}+\frac{ab}{a+c}+\frac{ac}{a+b}+\frac{b^2}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{c^2}{b+a}+\frac{ac}{c+b}+\frac{bc}{a+c}=H\) 

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}+\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{ac}{a+b}+\frac{bc}{a+b}\right)+\left(\frac{ab}{b+c}+\frac{ac}{c+b}\right)=H\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}+a+b+c=H\)( Chỗ này làm hơi tắt bỏ qua nha )

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}=H-\left(a+b+c\right)\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}=0\left(đpcm\right)\)

26 tháng 9 2019

ĐK:....

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)(nhân vào rồi tách)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

 Việt Hoàng _ TTH (*Yonko Team*): Mình chưa xem kỹ nhưng có lẽ hướng làm bạn là sai òi nhé!

10 tháng 3 2020

a, ĐK: \(x\ne\pm1\)

b, Ta có:

\(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\) \(=\frac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{2x^2-2}\) \(=\frac{x-1}{2\left(x-1\right)\left(x+1\right)}\) \(=\frac{1}{2\left(x+1\right)}\)

c, Với \(x\ne\pm1\), để \(A=-\frac{1}{2}\):

\(\Leftrightarrow\frac{1}{2\left(x+1\right)}=-\frac{1}{2}\) \(\Leftrightarrow x=-2\) (tm)

Bài 1. Tính: a, 3x . (\(5x^2\) - 2x + 1) b, (\(5x^4\) - \(3x^3 + x^2\) ) : 3.2 Bài 2. Phân tích đa thức thành nhân tử a, \(x^2 - 2xy + y^2\) b, \(x^2 - 4xy - y^2 + 4\) c, \(2x^2 + 5x\) Bài 3. Tìm x,y thỏa mãn đẳng thức a, \(3x^2 + 3y^2 + 4xy + 2x - 2y + 2 = 0\) b, với a,b,c,d là dương chứng minh rằng: \(\dfrac{a}{b+c}\) + \(\dfrac{b}{c+d}\)+ \(\dfrac{c}{d}\)+ \(\dfrac{d}{a+b}\) > 2 Bài 4: cho biểu thức : A= \(\dfrac{x^2-2x+1}{x^{2-1}}\) a, tìm...
Đọc tiếp

Bài 1. Tính:

a, 3x . (\(5x^2\) - 2x + 1)

b, (\(5x^4\) - \(3x^3 + x^2\) ) : 3.2

Bài 2. Phân tích đa thức thành nhân tử

a, \(x^2 - 2xy + y^2\)

b, \(x^2 - 4xy - y^2 + 4\)

c, \(2x^2 + 5x\)

Bài 3. Tìm x,y thỏa mãn đẳng thức

a, \(3x^2 + 3y^2 + 4xy + 2x - 2y + 2 = 0\)

b, với a,b,c,d là dương chứng minh rằng: \(\dfrac{a}{b+c}\) + \(\dfrac{b}{c+d}\)+ \(\dfrac{c}{d}\)+ \(\dfrac{d}{a+b}\) > 2

Bài 4: cho biểu thức : A= \(\dfrac{x^2-2x+1}{x^{2-1}}\)

a, tìm điều kiện để A xác định

b, Rút gọn biểu thức A.

Bài 5. Cho tam giác ABC có \(\widehat{A}\) = \(^{90^0}\), AH là đường cao. Gọi D là điểm đối xứng của H qua AB, E là điểm đối xứng của H qua AC. I là giao điểm của AB và DH. K là giao điểm của AC và HE.

a, tứ giác AIHK là hình gì? Vì sao?

b, chứng minh D,A,E thẳng hàng.

Giúp mình với mình đag cần gấp.

2
31 tháng 12 2018

câu 4:

a) ĐK: x≠ 0

b) \(A=x^2-x+1\)

sa thì sửa

Cúc bạn học tốthihi

15 tháng 12 2022

Bài 5:

a: H đối xứng với D qua AB

nên HD vuông góc với AB tại trung điểm của HD

=>AB là phân giác của góc HAD(1)

H đối xứng với E qua AC

nên HE vuông góc với AC tại trung điểm của HE

=>AC là phân giác của góc HAE(2)

Xét tứ giác AIHK có

góc AIH=góc AKH=góc KAI=90 độ

nên AIHK là hình chữ nhật

b: Từ (1), (2) suy ra góc EAD=2*90=180 độ

=>E,A,D thẳng hàng