Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Xét hiệu:
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)
\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
=> BĐT luôn đúng
*
Ta có:
\(a< b+c\Rightarrow a^2< ab+ac\)
\(b< a+c\Rightarrow b^2< ab+ac\)
\(c< a+b\Rightarrow a^2< ac+bc\)
Cộng từng vế bất đẳng thức ta được:
\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
B2:
Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)
Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)
Suy ra:
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
=> ĐPCM
\(P=\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}\ge1\)
Áp dụng BĐT Cô-si vào 3 số dương ta có :
\(\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b}{3}+\dfrac{2c+a}{9}\ge3\sqrt[3]{\dfrac{a^3}{b\left(2c+a\right)}.\dfrac{b}{3}.\dfrac{2c+a}{9}}=a\) ( 1 )
Tương tự ta có :
\(\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c}{3}+\dfrac{2a+b}{9}\ge3\sqrt[3]{\dfrac{b^3}{c\left(2a+b\right)}.\dfrac{c}{3}.\dfrac{2a+b}{9}}=b\) ( 2 )
\(\dfrac{c^3}{a\left(2b+c\right)}+\dfrac{a}{3}+\dfrac{2b+c}{9}\ge3\sqrt[3]{\dfrac{c^3}{a\left(2b+c\right)}.\dfrac{a}{3}.\dfrac{2b+c}{9}}=c\) ( 3 )
Cộng từng vế của ( 1 ) ( 2 ) và ( 3 ) ta có :
\(\dfrac{a^3}{c\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}+\dfrac{2}{3}\left(a+b+c\right)\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}+\dfrac{2}{3}.3\ge3\)
\(\Leftrightarrow P\ge1\)
\(\LeftrightarrowĐpcm.\)
Dấu " = " xảy ra khi \(a=b=c=1\)
Chúc bạn học tốt
có a3 kìa sao ko thay vào thành aa+b+c r` giải thử nhỉ :D
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
ta có \(Q=\frac{a^2+2a+1}{2a^2+\left(1-a\right)^2}+...\)
\(=\frac{a^2+2a+1}{3a^2-2a+1}+...=\frac{1}{3}+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+...\)
\(=1+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+\frac{\frac{8}{3}b+\frac{2}{3}}{3b^2-2b+1}+\frac{\frac{8}{3}c+\frac{2}{3}}{3c^2-2c+1}\)
mà \(3a^2-2a+1=3\left(a-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
=>\(\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}\le\frac{\frac{8}{3}a+\frac{2}{3}}{\frac{2}{3}}=\frac{3}{2}\left(\frac{8}{3}a+\frac{2}{3}\right)=4a+1\)
tương tự mấy cái kia rồi + vào, ta có
\(Q\le1+4\left(a+b+c\right)+3=8\)
dấu = xảy ra <=>a=b=c=1/3
^_^
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(B=\frac{1}{(a+2b)(a+2c)}+\frac{1}{(b+2a)(b+2c)}+\frac{1}{(c+2a)(c+2b)}\)
\(\geq \frac{9}{(a+2b)(a+2c)+(b+2a)(b+2c)+(c+2a)(c+2b)}\)
\(\Leftrightarrow B\geq \frac{9}{(a^2+2ac+2ab+4bc)+(b^2+2bc+2ab+4ac)+(c^2+2bc+2ac+4ab)}\)
\(\Leftrightarrow B\geq \frac{9}{a^2+b^2+c^2+8(ab+bc+ac)}=\frac{9}{(a+b+c)^2+6(ab+bc+ac)}(*)\)
Theo hệ quả quen thuộc của BĐT Cô-si:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow 2(a+b+c)^2\geq 6(ab+bc+ac)(**)\)
Từ \((*); (**)\Rightarrow B\geq \frac{9}{(a+b+c)^2+2(a+b+c)^2}=\frac{3}{(a+b+c)^2}\geq \frac{3}{3^2}=\frac{1}{3}\)
(do \(a+b+c\leq 3)\)
Do đó: \(B_{\min}=\frac{1}{3}\)
Dấu bằng xảy ra khi \(a=b=c=1\)