Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c
Áp dụng
\(\left(x+y+z\right)^3=x^3+y^3+z^3+\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz\)
Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
=> \(2ab+2ac+2bc=0\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
KHi đó:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)-\frac{3}{abc}\)
=> \(0=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+0-\frac{3}{abc}\)
=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
1) Có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3-3abc=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
2)Có: \(a+b-c=0\)
\(\Leftrightarrow a+b=c\)
\(\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)
\(\Leftrightarrow a^3+b^3+3abc=c^3\)
\(\Leftrightarrow a^3+b^3-c^3=-3abc\)
\(VT=a^3\left(b^2-c^2\right)+b^3\left(b^2-a^2\right)+b^3\left(c^2-b^2\right)+c^3\left(a^2-b^2\right)\)
\(=\left(b^2-c^2\right)\left(a^3-b^3\right)-\left(a^2-b^2\right)\left(b^3-c^3\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(b+c\right)\left(a^2+b^2+ab\right)-\left(a-b\right)\left(b-c\right)\left(a+b\right)\left(b^2+c^2+bc\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a^2b+a^2c-ac^2-bc^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[b\left(a-c\right)\left(a+c\right)+ac\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ab+bc+ca\right)\)
Do \(a< b< c\Rightarrow\left\{{}\begin{matrix}a-b< 0\\b-c< 0\\a-c< 0\end{matrix}\right.\) \(\Rightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)< 0\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ab+bc+ca\right)< 0\) (đpcm)
Vì a + b + c = 0 => c = -(a +b)
Ta có: (nhớ thay c = -(a + b))
\(a^3+b^3+a^2c+b^2c-abc\)
\(=a^3+b^3+\left(a^2+b^2-ab\right)c\)
\(=a^3+b^3-\left(a^2+b^2-ab\right)\left(a+b\right)\)
\(=a^3+b^3-a^3-a^2b-b^2a-b^3+a^2b+ab^2\)
\(=0\)