Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
Mấy cái dấu "=" anh tự xét.
Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)
b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)
\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
Mình nghĩ CM bằng BĐT Bunhiacopxky đã là chi tiết rồi nhưng nếu bạn muốn chi tiết hơn nữa thì thế này:
Xét hiệu:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)-(a+b+c)^2\)
\(=a^2+a^2.\frac{y}{x}+a^2.\frac{z}{x}+b^2+b^2.\frac{x}{y}+b^2.\frac{z}{y}+c^2+c^2.\frac{x}{z}+c^2.\frac{y}{z}-(a^2+b^2+c^2-2ab-2bc-2ac)\)
\(=(a^2.\frac{y}{x}+b^2.\frac{x}{y}-2ab)+(a^2.\frac{z}{x}+c^2.\frac{x}{z}-2ac)+(b^2.\frac{z}{y}+c^2.\frac{y}{z}-2bc)\)
\(=(a\sqrt{\frac{y}{x}}-b\sqrt{\frac{x}{y}})^2+(a\sqrt{\frac{z}{x}}-c\sqrt{\frac{x}{z}})^2+(b\sqrt{\frac{z}{y}}-c\sqrt{\frac{y}{z}})^2\geq 0\) với mọi $a,b,c,x,y,z>0$
Do đó:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)
\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+y+z}\) (đpcm)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)
\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+z+y}\) (đpcm)
Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)