Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)
\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)
\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)
Nhân theo vế => ddpcm "=" khi a=b=c
Trả lời:
a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)
Ta có: a + b\(\ge\)\(2\sqrt{ab}\)
b+c\(\ge\)\(2\sqrt{bc}\)
c+a\(\ge\)\(2\sqrt{ca}\)
\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)
b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)
Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b
\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab
CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab
\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab
= 2(a2+b2)+2ab =6(đpcm)
c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a
Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)
\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)
\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)
\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)
Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc
\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc
\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)
Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc
\(\Leftrightarrow\) 1 \(\ge\) 8abc
\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)
Từ (1),(3) kết hợp với (2)
\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)
Theo đề bài ta có:
\(\hept{\begin{cases}-1\le a\le2\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Rightarrow a^2-a-2\le0\\-1\le b\le2\Rightarrow\left(b+1\right)\left(b-2\right)\le0\Rightarrow b^2-b-2\le0\\-1\le c\le2\Rightarrow\left(c+1\right)\left(c-2\right)\le0\Rightarrow c^2-c-2\le0\end{cases}\Rightarrow}\)\(a^2+b^2+c^2\ge\left(a+b+c\right)+6=6\)
Ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Khi đó \(f\left(x\right)=a^2\) là hàm lồi trên \(\left[-1;2\right]\) và \(\left(-1;-1;2\right)›\left(a;b;c\right)\)
Áp dụng BĐT Karamata ta có:
\(6=\left(-1\right)^2+\left(-1\right)^2+2^2\ge a^2+b^2+c^2\)
Xảy ra khi a=b=-1;c=2