Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Ta có BĐT sau:
\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\left(true\right)\)
Khi đó tương tự ta có nốt \(\frac{b^4+c^4}{b^3+c^3}\ge\frac{b+c}{2};\frac{c^4+a^4}{c^3+a^3}\ge\frac{c+a}{2}\)
Khi đó \(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
Ta dễ chứng minh được
\(\frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}=\frac{b^4}{a^3+b^3}+\frac{c^4}{b^3+c^3}+\frac{a^4}{a^3+c^3}\)( trừ cái là xong )
Khi đó \(LHS\ge\frac{a+b+c}{2}\)
Ta có điều phải chứng minh
Đẳng thức xảy ra tại a=b=c
(a+b+c)(a3+b3+c3)
=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4
=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)
=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
P/s đến đây bạn áp đụng bđt thức bunhi a là ra
(a+b+c) (a3+b3+c3)
=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4
=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)
=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
Bạn tham khảo (hoàn toàn dùng Cô-si):
Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến
*học ngu chỉ làm được câu b. lười quá nên làm tắt*
Biến đổi thành
4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0
xét 4(a3+b3)-(a+b)3 =(a+b)[4(a2-ab+b2)-(a+b)2]
=3(a+b)(a-b)2 >=0
tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)
=> đpcm
đẳng thức xảy ra khi a=b=c
Một kiểu biến đổi tương đương khác.
\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\). Giả sử \(c=min\left\{a,b,c\right\}\)
\(VT-VP=\frac{\left(7a^2+8ab-ac+7b^2-bc-2c^2\right)\left(a-b\right)^2+\left(a^2+ac+b^2+bc+2c^2\right)\left(a+b-2c\right)^2}{4}\ge0\)
Ta có qed./.
P/s: Bài giải trong 3 dòng:D
Làm sao để biến đổi được như mình? Không hề khó! Ta có:
\(f\left(a;b;c\right)=f_1\left(a-c\right)\left(b-c\right)+f_2\left(a-b\right)^2\) (1)
\(=f_1\left(a-c\right)\left(b-c\right)+f_2\left(a+b-2c+2\left(c-b\right)\right)^2\)
\(=f_1\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2+4f_2\left(a+b-2c\right)\left(c-b\right)+4f_2\left(c-b\right)^2\)
\(=f_1\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2+4f_2\left(c-b\right)\left(a+b-2c+c-b\right)\)
\(=-\left(4f_2-f_1\right)\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2\) (2)
Từ (1) và (2) suy ra \(f\left(a;b;c\right)=\frac{f_2\left(4f_2-f_1\right)\left(a-b\right)^2+f_2.f_1.\left(a+b-2c\right)^2}{4f_2-f_1+f_1}\)
\(=\frac{\left(4f_2-f_1\right)\left(a-b\right)^2+f_1\left(a+b-2c\right)^2}{4}\) (3)
Như vậy, ta chỉ cần tìm được cách phân tích (1) thì sẽ tìm được cách phân tích (3).
Trở lại bài trên: \(VT-VP=2\left(a^4+b^4+c^4\right)-a^3\left(b+c\right)-b^3\left(c+a\right)-c^3\left(a+b\right)\)
\(=\left(a^2+ac+b^2+bc+2c^2\right)\left(a-c\right)\left(b-c\right)+2\left(a^2+ab+b^2\right)\left(a-b\right)^2\)
Từ đó dẫn đến cách phân tích bên trên.