\(a^4+b^4+c^4\ge a^3+b^3+c^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

Một kiểu biến đổi tương đương khác.

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\). Giả sử \(c=min\left\{a,b,c\right\}\)

\(VT-VP=\frac{\left(7a^2+8ab-ac+7b^2-bc-2c^2\right)\left(a-b\right)^2+\left(a^2+ac+b^2+bc+2c^2\right)\left(a+b-2c\right)^2}{4}\ge0\)

Ta có qed./.

P/s: Bài giải trong 3 dòng:D

22 tháng 11 2019

Làm sao để biến đổi được như mình? Không hề khó! Ta có:

\(f\left(a;b;c\right)=f_1\left(a-c\right)\left(b-c\right)+f_2\left(a-b\right)^2\) (1)

\(=f_1\left(a-c\right)\left(b-c\right)+f_2\left(a+b-2c+2\left(c-b\right)\right)^2\)

\(=f_1\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2+4f_2\left(a+b-2c\right)\left(c-b\right)+4f_2\left(c-b\right)^2\)

\(=f_1\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2+4f_2\left(c-b\right)\left(a+b-2c+c-b\right)\)

\(=-\left(4f_2-f_1\right)\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2\) (2)

Từ (1) và (2) suy ra \(f\left(a;b;c\right)=\frac{f_2\left(4f_2-f_1\right)\left(a-b\right)^2+f_2.f_1.\left(a+b-2c\right)^2}{4f_2-f_1+f_1}\)

\(=\frac{\left(4f_2-f_1\right)\left(a-b\right)^2+f_1\left(a+b-2c\right)^2}{4}\) (3)

Như vậy, ta chỉ cần tìm được cách phân tích (1) thì sẽ tìm được cách phân tích (3).

Trở lại bài trên: \(VT-VP=2\left(a^4+b^4+c^4\right)-a^3\left(b+c\right)-b^3\left(c+a\right)-c^3\left(a+b\right)\)

\(=\left(a^2+ac+b^2+bc+2c^2\right)\left(a-c\right)\left(b-c\right)+2\left(a^2+ab+b^2\right)\left(a-b\right)^2\)

Từ đó dẫn đến cách phân tích bên trên.

6 tháng 9 2019

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc

Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)

Ta có \(LHS=a^3.a+b^3.b+c^3.c\) 

\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)

\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)

\(=a^3+b^3+c^3=RHS\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 9 2019

Bài 2:

\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.

30 tháng 4 2020

Ta có BĐT sau:

\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\left(true\right)\)

Khi đó tương tự ta có nốt \(\frac{b^4+c^4}{b^3+c^3}\ge\frac{b+c}{2};\frac{c^4+a^4}{c^3+a^3}\ge\frac{c+a}{2}\)

Khi đó \(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

Ta dễ chứng minh được 

\(\frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}=\frac{b^4}{a^3+b^3}+\frac{c^4}{b^3+c^3}+\frac{a^4}{a^3+c^3}\)( trừ cái là xong )

Khi đó \(LHS\ge\frac{a+b+c}{2}\)

Ta có điều phải chứng minh

Đẳng thức xảy ra tại a=b=c

1 tháng 5 2020

Sử dụng BĐT Cauchu Schawrz cũng được

(a+b+c)(a3+b3+c3)

=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4

=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)

=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)

=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)

P/s đến đây bạn áp đụng bđt thức bunhi a là ra

(a+b+c) (a3+b3+c3)

=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4

=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)

=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)

=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)

NV
25 tháng 4 2020

Bạn tham khảo (hoàn toàn dùng Cô-si):

Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến

25 tháng 4 2020

cảm ơn ạ ^^

16 tháng 4 2020

*học ngu chỉ làm được câu b. lười quá nên làm tắt*

Biến đổi thành

4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0

xét 4(a3+b3)-(a+b)=(a+b)[4(a2-ab+b2)-(a+b)2]

                                =3(a+b)(a-b)2 >=0

tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)

=> đpcm

đẳng thức xảy ra khi a=b=c

29 tháng 4 2020

Ta có : \(4\left(a^3+b^3\right)=4a^3+4b^3\)(1)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^2\)(2)

Từ 1 và 2 \(< =>3a^3+3b^3\ge3a^2b+3ab^2\)

\(< =>a^3+b^3\ge a^2b+ab^2\)

\(< =>a+b\ge b+a\left(đpcm\right)\)

Ko chắc lắm vì t ms lớp 6 :((