\(\frac{1}{b^2}\)+ \(\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)abc=\frac{3}{4}8\Rightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=\frac{3.8}{4}\Leftrightarrow\)\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=6\)

3 tháng 12 2016

lm đc trước rồi nhưng cũng k cho

28 tháng 12 2015

\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{8}{a^2}+\frac{8}{b^2}+\frac{8}{c^2}=8\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)

9 tháng 6 2017

từ giả thiết 1 suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

lại có 1 + a2 \(\ge\)2a nên \(\frac{1}{1+a^2}\le\frac{1}{2a}\)

do đó \(\frac{3}{2}=\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)

dấu bằng xảy ra khi a = b = c = 1.

vậy S = a + b + c = 3.

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.

5 tháng 4 2017

a) đề thiếu òi bạn à            

11 tháng 12 2019

\(a+b+c=1\)

\(\Rightarrow\left(a+b+c\right)^2=1\)

\(\Rightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1-2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2=1-2\left(ab+bc+ca\right)\)

Lại có:

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)

\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow abc\le\frac{ab+bc+ca}{9}\)

Khi đó:

\(M\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=21+9=30\)

Dấu "=" xảy ra tại \(a=b=c=\frac{1}{3}\)