Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{5a+5b+2c}{\sqrt{12\left(a^2+ab+bc+ca\right)}+\sqrt{12\left(b^2+ab+bc+ca\right)}+\sqrt{c^2+ab+bc+ca}}\)
\(=\frac{5a+5b+2c}{\sqrt{12\left(a+b\right)\left(a+c\right)}+\sqrt{12\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\frac{5a+5b+2c}{\sqrt{\left(6a+6b\right)\left(2a+2c\right)}+\sqrt{\left(6a+6b\right)\left(2b+2c\right)}+\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(\Rightarrow P\ge\frac{2\left(5a+5b+2c\right)}{6a+6b+2a+2c+6a+6b+2b+2c+a+c+b+c}\)
\(\Rightarrow P\ge\frac{2\left(5a+5b+2c\right)}{3\left(5a+5b+2c\right)}=\frac{2}{3}\)
\(P_{min}=\frac{2}{3}\) khi \(\left\{{}\begin{matrix}a=b=1\\c=5\end{matrix}\right.\)
thay 28 vao pt nhan tu roi am-gm cho cai do luon
Ps: tim Min
Bài 1:
a) \(=5.|2a|-5a^2\)
b) \(=7\left(a-1\right)+5a=12a-7\)
c) \(|a-2|-5\sqrt{a+2}\)
Bài 2:
a) \(=3-\sqrt{2}+5-\sqrt{2}=8-2\sqrt{2}\)
b) \(=3+\sqrt{2}-\left(3-\sqrt{2}\right)\)
\(=2\sqrt{2}\)
c) \(=6-\sqrt{5}-\left(6+\sqrt{5}\right)\)
\(=-2\sqrt{5}\)
a) \(5\sqrt{4a^2}-5a^2\)
\(=5.|2a|-5a^2\)
b) \(7\sqrt{\left(a-1\right)^2}+5a\)
\(=7\left(a-1\right)+5a\)
\(=12a-7\)
c) \(\sqrt{\left(2-a\right)^2}-5\sqrt{a+2}\)
\(=|a-2|-5\sqrt{a+2}\)
bài 2:
a)\(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=3-\sqrt{2}+5-\sqrt{2}\)
\(=8-2\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=3+\sqrt{2}-\left(3-\sqrt{2}\right)\)
\(=2\sqrt{2}\)
c)\(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}\)
\(=6-\sqrt{5}-\left(6+\sqrt{5}\right)\)
\(=-2\sqrt{5}\)
a) \(A=\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\)
\(=\sqrt{5}-2+2\sqrt{2}-\sqrt{5}=2\sqrt{2}-2\)
b) \(B=\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\)
\(=2\sqrt{2}-7+3-2\sqrt{2}=-4\)
c) \(C=\sqrt{9+6\sqrt{2}+2}-\sqrt{9-6\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left(3+\sqrt{2}\right)-\left(3-\sqrt{2}\right)=2\sqrt{2}\)
d) \(D=\sqrt{9+12\sqrt{2}+8}+\sqrt{9-12\sqrt{2}+8}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left(3+2\sqrt{2}\right)-\left(3-2\sqrt{2}\right)=4\sqrt{2}\)
a: \(=6-\sqrt{15}+2\sqrt{15}=6+\sqrt{15}\)
b: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)
\(=7-2\sqrt{21}+2\sqrt{21}=7\)
c: \(=10+5\sqrt{10}-5\sqrt{10}=10\)
d: \(=22-\sqrt{198}+\sqrt{198}=22\)
\(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}-\sqrt{12+2\sqrt{11}}}\right)\left(\sqrt{11}+\sqrt{3}\right)\)
\(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}}-\sqrt{12+2\sqrt{11}}\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{12+2\sqrt{\left(\sqrt{13+1}\right)^2}}-\sqrt{\left(\sqrt{11+1}\right)^2}\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{12+2\sqrt{13+2}}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{13}+1-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)\(=\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{11}+\sqrt{13}\right)=13-11=2\)
C = \(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}}-\sqrt{12+2\sqrt{11}}\right)\left(\sqrt{11}+\sqrt{13}\right)\)
C = \(\left(\sqrt{12+2\sqrt{\left(\sqrt{13}+1\right)^2}}-\sqrt{\left(\sqrt{11}+1\right)^2}\right)\left(\sqrt{11}+\sqrt{13}\right)\)
C = \(\left(\sqrt{14+2\sqrt{13}}-\left(\sqrt{11}+1\right)\right)\left(\sqrt{11}+\sqrt{13}\right)\)
C = \(\left(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)
C = \(\left(\sqrt{13}+1-\sqrt{11}-1\right)\left(\sqrt{13}+\sqrt{11}\right)\)
C \(\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)\) = \(13-11\) = \(2\)
\(P=\frac{5a+5b+2c}{\sqrt{12\left(a^2+11\right)}+\sqrt{12\left(b^2+11\right)}+\sqrt{c^2+11}}\)
\(=\frac{5a+5b+2c}{2\sqrt{3\left(a+b\right)\left(a+c\right)}+2\sqrt{3\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)(Gọi A là mẫu của phân thức) (*)
Áp dụng bất đẳng thức Cô - si cho hai số không âm, ta có:
\(2\sqrt{3\left(a+b\right)\left(a+c\right)}\le3\left(a+b\right)+\left(a+c\right)=4a+3b+c\)(1)
Tương tự ta có: \(2\sqrt{3\left(b+a\right)\left(b+c\right)}\le4b+3a+c\)(2)
\(\sqrt{\left(c+a\right)\left(c+b\right)}\le\frac{1}{2}\left(a+b+2c\right)\)(3)
Cộng từng vế của (1); (2); (3), ta có:
\(A\le\frac{15}{2}a+\frac{15}{2}b+3c\)(**)
Từ (*) và (**) suy ra \(P\ge\frac{5c+5b+2c}{\frac{15}{2}a+\frac{15}{2}b+3c}=\frac{2}{3}\)
Đẳng thức xảy ra khi a = b = 1; c = 5
Dễ thấy \(a^2+11=a^2+ab+cb+ca=\left(a+b\right)\left(a+c\right)\)do đó ta đc
\(\sqrt{12\left(a^2+11\right)}=2\sqrt{3\left(a+b\right)\left(a+c\right)}\le3\left(a+b\right)\left(a+c\right)=4a+3b+c\)
tương tự nha
\(\sqrt{12\left(b^2+11\right)}=2\sqrt{3\left(a+b\right)\left(b+c\right)}\le3\left(a+b\right)\left(b+c\right)=3a+4b+c\)
\(\sqrt{c^2+11}=\sqrt{\left(c+a\right)\left(b+c\right)}\le\frac{c+a+b+c}{2}=\frac{a+b+2c}{2}\)
khi đó ta đc
\(\sqrt{12\left(a^2+11\right)}+\sqrt{12\left(b^2+11\right)}+\sqrt{c^2+11}\le\frac{15a}{2}+\frac{15b}{2}+3c\)
suy ra \(P\ge\frac{5a+5b+2c}{\frac{15a}{2}+\frac{15b}{2}+3c}=\frac{10a+10b+4c}{15a+15b+6c}=\frac{2}{3}\)
zậy GTNN của P=2/3
dấu = xảy ra khi \(\hept{\begin{cases}2a+3b=3a+2b=c\\ab+bc+ac=11\end{cases}=>a=b=1,c=5}\)
cách của bạn kia cx đc nha , cậu có thể tham khảo cách mình