K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\).

=> Theo t/c của dãy tỉ số bằng nhau :

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+a+c}=1\)

=>a=b=c

Thay c;b bằng a ta có :

\(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

25 tháng 2 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

a/b = b/c = c/a = a+b+c/b+c+a = 1

=> a=b;b=c;c=a

=> a=b=c

Khi đó : a^2+b^2+c^2/(a+b+c)^2 = 3a^2/(3a)^2 = 3a^2/9a^2 = 1/3

Tk mk nha

18 tháng 3 2020

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\left(vì\text{ a;b;c dương}\right)\)

\(\Rightarrow a=b=c\Rightarrow\frac{a^2+b^2+c^2}{a^2b+b^2c+c^2a}=\frac{3a^2}{3a^3}=\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

19 tháng 12 2017

Câu hỏi của Trần Trà My - Toán lớp 7 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

2 tháng 9 2020

gâhkads

DD
10 tháng 11 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Suy ra \(a=b=c\).

Khi đó: \(M=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\).

9 tháng 1 2020

Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)

\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)

\(\Rightarrow ac+bc=ab+ac=bc+ab\)

Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\)   (1)

 \(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\)              (2)

Từ (1) và (2) \(\Rightarrow a=b=c\) 

Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)