\(a+b=7\) và \(a.b=12\) Tính M =\(\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

\(\left(a-b\right)^2=a^2-2ab+b^2+2ab-2ab.\)

                     \(=\left(a+B\right)^2-4ab\)

20 tháng 4 2017

Bài giải:

a) (a + b)2 = (a – b)2 + 4ab

- Biến đổi vế trái:

(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

- Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

= (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2 +2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

13 tháng 7 2017

CMR: (a + b)2 = (a - b)2 + 4ab

(a - b)2 = (a + b)2 - 4ab

Ta có: (a + b)2 = a2 + 2ab + b2

= a2 +2ab + b2 - 2ab +2ab

= a2 - 2ab + b2 + 2ab +2ab

= (a - b)2 +4ab

Ta có: (a - b)2 = a2 - 2ab + b2

= a2 - 2ab + b2 + 2ab - 2ab

= a2 + 2ab + b2 - 2ab - 2ab

= (a + b)2 - 4ab

Áp dụng:

a) Tính (a - b)2 , biết a + b = 7 và a.b = 12

Ta có: (a - b)2 = (a + b)2 - 4ab

= 72 - 4.12

= 49 - 48

Vậy (a - b)2 = 1

b) Tính (a + b)2 , biết a - b = 7 và a.b = 3

Ta có: (a + b)2 = (a - b)2 + 4ab

= 72 + 4.3

= 49 + 12

Vậy ( a + b)2 = 61

26 tháng 9 2017

Bài1:

\(a,\left(-8\right)^9\)\(\left(-32\right)^5\)

Ta có:

\(\left(-8\right)^9=-2^{27}\)

\(\left(-32\right)^5=\left(-8.4\right)^5=-2^{27}.2^{10}\)

\(-2^{27}.10< -2^{27}\) nên \(\left(-8\right)^9>\left(-32\right)^5\)

Các câu sau tương tự

Bài2:

\(a,2\left|x-1\right|-3x=7\)

+)Xét \(x\ge1\Rightarrow\left|x-1\right|=x-1\)

Do đó:

\(2\left(x-1\right)-3x=7\\ \Leftrightarrow2x-2-3x=7\\ \Leftrightarrow-x=9\\ \Leftrightarrow x=-9\left(loại\right)\)

+)Xét \(x< 1\Rightarrow\left|x-1\right|=1-x\)

Do đó:

\(2\left(1-x\right)-3x=7\\ \Leftrightarrow2-2x-3x=7\\ \Leftrightarrow-5x=5\\ x=-1\left(chon\right)\)

Vậy x=-1

Câu b tương tự

26 tháng 9 2017

Bài 1:

\(a,\left(-8\right)^9\)\(\left(-32\right)^5\)

\(\left(-8\right)^9=\left[\left(-2\right)^3\right]^9=\left(-2\right)^{27}\)

\(\left(-32\right)^5=\left[\left(-2\right)^5\right]^5=\left(-2\right)^{25}\)

\(\left(-2\right)^{27}< \left(-2\right)^{25}\)

\(\Rightarrow\left(-8\right)^9< \left(-32\right)^5\)

\(b,2^{21}\)\(3^{14}\)

\(2^{21}=\left(2^3\right)^7\)

\(3^{14}=\left(3^2\right)^7\)

\(2^3< 3^2\)\(\Rightarrow2^{21}< 3^{14}\)

\(c,12^8\)\(8^{12}\)

\(12^8=\left(12^2\right)^4=144^4\)

\(8^{12}=\left(8^3\right)^4=512^4\)

\(144^4< 512^4\)\(\Rightarrow12^8< 8^{12}\)

\(d,\left(-5\right)^{39}\)\(\left(-2\right)^{91}\)

\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}\)

\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}\)

\(\left(-5\right)^3>\left(-2\right)^7\)\(\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)

Bài 2:

\(a,2.\left|x-1\right|-3x=7\)

\(\left|x-1\right|=\dfrac{7+3x}{2}\)

Ta có 2 trường hợp:

Th1:\(x-1=\dfrac{7-3x}{2}\)

\(\dfrac{2x-2}{2}=\dfrac{7+3x}{2}\)

\(\Rightarrow2x-2=7+3x\)

\(2x-3x=7+2\)

\(-x=9\Rightarrow x=-9\)

Th2:\(x+1=-\dfrac{7+3x}{2}\)

\(\dfrac{2x-2}{2}=\dfrac{-7-3x}{2}\)

\(\Rightarrow2x-2=-7-3x\)

\(2x+3x=-7+2\)

\(5x=-5\Rightarrow x=-1\)

Vậy \(x\in\left\{-9;-1\right\}\)

\(b,\left|5x-3\right|=\left|7-x\right|\)

Ta có: Th1: \(\left|7-x\right|=7-x\) khi \(7-x\ge0\)\(\Rightarrow x\le7\)

\(5x-3=7-x\)

\(5x+x=7+3\)

\(6x=10\Rightarrow x=\dfrac{10}{6}=\dfrac{5}{3}\)( thoả mãn )

vì x thoả mãn \(x\le7\)\(\Rightarrow\) th1 thoả mãn x

Ta có: Th2: \(\left|7-x\right|=-\left(7-x\right)\) khi \(7-x< 0\Rightarrow x>7\)

\(5x-3=-\left(7-x\right)\)

\(5x-3=-7+x\)

\(5x-x=-7+3\)

\(4x=-4\Rightarrow x=-1\) ( loại )

Vì x thoả mãn \(x>7\)\(x=-1\Rightarrow\)th2 loại

20 tháng 4 2017

a) a3 + b3 = (a + b)3 – 3ab(a + b)

Thực hiện vế phải:

(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

Thực hiện vế phải:

(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.



27 tháng 6 2017

a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)

=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.


18 tháng 10 2018

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\Rightarrow6^2=a^2+b^2+c^2+2.12\Rightarrow a^2+b^2+c^2=12\)

Ta có:

     \(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow M=0}\)

Chúc bạn học tốt.

19 tháng 8 2020

Sử dụng giả thiết \(a^2+b^2+c^2=3\), ta được: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)\(\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)

Tương tự, ta được: \(\frac{b^2c^2+7}{\left(b+c\right)^2}\ge1+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}\)\(\frac{c^2a^2+7}{\left(c+a\right)^2}\ge1+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\)

Ta quy bài toán về chứng minh bất đẳng thức: \(\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\ge3\)

Áp dụng bất đẳng thức Cauchy ta được \(\Sigma_{cyc}\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\ge3\sqrt[3]{\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)

Áp dụng bất đẳng thức quen thuộc \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)ta được: \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

Mặt khác ta lại có 

\(4\left(a^2+b^2\right)\left(b^2+c^2\right)\le\left(2b^2+c^2+a^2\right)^2\)(1) ; \(4\left(b^2+c^2\right)\left(c^2+a^2\right)\le\left(2c^2+a^2+b^2\right)^2\)(2);\(4\left(c^2+a^2\right)\left(a^2+b^2\right)\le\left(2a^2+b^2+c^2\right)^2\)(3) (Theo BĐT \(4xy\le\left(x+y\right)^2\))

Nhân theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(64\left(a^2+b^2\right)^2\left(b^2+c^2\right)^2\left(c^2+a^2\right)^2\)\(\le\left(2a^2+b^2+c^2\right)^2\left(2b^2+c^2+a^2\right)^2\left(2c^2+a^2+b^2\right)^2\)

hay \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)

Từ đó dẫn đến \(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)

Suy ra \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)

Vậy bất đẳng thức trên được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

1a)

Đặt \(a^2+a+1=t\Rightarrow a^2+a+2=t+1\)

\(\Rightarrow A=t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12=\left(t-3\right)\left(t+4\right)\)

\(=\left(a^2+a-2\right)\left(a^2+a+5\right)\)

Mà \(a>1\Rightarrow\hept{\begin{cases}a^2+a-2>0\\a^2+a+5>0\end{cases}}\forall a>1\)

Vậy A là hợp số

1b)

Ta có :

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1=....=\left(2^{1006}-1\right)\left(2^{1006}+1\right)+1\)

\(=2^{2012}-1+1=2^{2012}\)

2 tháng 6 2017

\(A^5-B^5=\left(A-B\right)\cdot\left(A^4+A^3\cdot B+A^2\cdot B^2+A\cdot B^3+B^4\right)\\ A^6-B^6=\left(A-B\right)\cdot\left(A^5+A^4\cdot B+A^3\cdot B^2+A^2\cdot B^3+A\cdot B^4+B^5\right)\\ A^{10}-B^{10}=\left(A-B\right)\cdot\left(A^9+A^8\cdot B+A^7\cdot B^2+A^6\cdot B^3+A^5\cdot B^4+A^4\cdot B^5+A^3\cdot B^6+A^2\cdot B^7+A\cdot B^8+B^9\right)\\ A^n-B^n=\left(A-B\right)\cdot\left(A^{n-1}+A^{n-2}\cdot B+A^{n-3}\cdot B^2+...+A^2\cdot B^{n-3}+A\cdot B^{n-2}+B^{n-1}\right)\)

2 tháng 6 2017

Tuấn Anh Phan Nguyễn Nguyễn Huy Tú Ace Legona Anh Triêt Võ Đông Anh Tuấn soyeon_Tiểubàng giải

Băng đội chuyên toán làm đi ạ!!!

24 tháng 7 2017

a) Ta có:\(VT=a^2-2ab+b^2\)

\(=a^2+2ab+b^2-4ab=\left(a+b\right)^2-4ab=VP\)

Vậy ...

b) \(a+b=7\Rightarrow\left(a+b\right)^2=7^2=49\)

\(\Leftrightarrow a^2+2ab+b^2=49\)

\(\Leftrightarrow a^2+24+b^2=49\)

\(\Leftrightarrow a^2+b^2=25\)

\(\Leftrightarrow\left(a-b\right)^2+2ab=25\)

\(\Leftrightarrow\left(a-b\right)^2=25-24=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=1\\a-b=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(a-b\right)^{2017}=1\\\left(a-b\right)^{2017}=-1\end{matrix}\right.\)

Vậy (a - b)2017 = 1 hoặc (a - b)2017 = -1.

24 tháng 7 2017

Câu 1:

Ta có:

\(VP=\left(a+b\right)^2-4ab=a^2+2ab+2b^2-4ab\)

\(=a^2-2ab+b^2=\left(a-b\right)^2=VT\)

Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)(đpcm)

Chúc bạn học tốt!!!