K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a+b=7 và ab=12

=>a,b là các nghiệm của phương trình:

x^2-7x+12=0

=>x=3 hoặc x=4

=>(a,b)=(3;4) hoặc (a,b)=(4;3)

TH1: a=3; b=4

=>(a-b)^3=-1

TH2: a=4; b=3

=>(a-b)^3=1

HQ
Hà Quang Minh
Giáo viên
28 tháng 7 2023

Có \(a=\dfrac{12}{b}\)

\(\Rightarrow a+b=\dfrac{12}{b}+b=7\\ \Rightarrow b^2-7b+12=0\\ \Leftrightarrow\left[{}\begin{matrix}b=3\Rightarrow a=4\\b=4\Rightarrow a=3\end{matrix}\right.\)

Với a = 4, b = 3, ta có: \(\left(a-b\right)^3=\left(4-3\right)^3=1\)

Với a = 3, b = 4, ta có: \(\left(a-b\right)^3=\left(3-4\right)^3=-1\)

10 tháng 8 2016

a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)       (1)

Thay a+b=7 và ab=12 vào (1) ta được:

\(\left(a-b\right)^2=7^2-4.12=49-48=1\)

Vậy:.....

b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)     (2)

Thay a-b=6 và ab = 3 vào (2) ta được:

\(\left(a+b\right)^2=6^2+4.3=36+12=48\)

Vậy:....

c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)    (3)

Thay ab = 6 và a+b = -5 vào (3) ta được:

\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)

Vậy......

26 tháng 10 2017

Ta có\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

                            \(=49-48\)

                               \(=1\)

Mà \(a>b\Rightarrow a-b>0\)

\(\Rightarrow a-b=1\)

\(\Rightarrow\left(a-b\right)^{2009}=1\)

26 tháng 10 2017

Bạn ơi cho mình hỏi tại sao (a-b)^2 lại bằng (a+b)^2-4ab vậy

13 tháng 9 2016

a+b=7

                  =>  a=4,b=3 hoặc a=3,b=4 =>(a-b)2012=1

ab=12     

20 tháng 10 2018

tách ra như bth ấy

20 tháng 10 2018

Câu 1 :

a) \(x^3-5x^2-14x\)

\(=x^3-7x^2+2x^2-14x\)

\(=x^2\left(x-7\right)+2x\left(x-7\right)\)

\(=\left(x-7\right)\left(x^2+2x\right)\)

\(=x\left(x-7\right)\left(x+2\right)\)

b) \(a^4+a^2+1\)

\(=\left(a^2\right)^2+2a^2+1-a^2\)

\(=\left(a^2+1\right)-a^2\)

\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)

c) \(x^4+64\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot8+8^2-2\cdot x^2\cdot8\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

Câu 2 :

a) \(\left(a-b\right)^2=a^2-2ab+b^2\)

Ta có : \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow a^2+b^2=\left(a+b\right)^2-2ab=7^2-2\cdot14=25\)

\(\Rightarrow\left(a-b\right)^2=25-2\cdot12=1\)

b) tương tự

18 tháng 11 2018

Vì a < b, a + b = 7, a . b = 12 nên a = 3 , b = 4

Khi đó : \(\left(a-b\right)^{2009}=\left(3-4\right)^{2009}=-1\)

18 tháng 11 2018

vì a<b ,a+b = 7 ,a.b=12 nên a = 3, b = 4

khi đó :

(a - b ) 2009 = (3 - 4 ) 2009= - 1

30 tháng 6 2018

Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)

30 tháng 6 2018

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)

=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)

2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)

26 tháng 9 2021

`a^2+b^2+c^2=ab+ab+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`<=>a=b=c`

`<=>3a^2=12`

`<=>a^2=4`

`<=>a=b=c=2` hoặc `a=b=c=-2`

`=>P=2^3+2^3+2^3=24` hoặc `P=(-2)^3+(-2)^3+(-2)^3=-24`