\(a^2+b^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

Ta có:

\(a+b=6\)

nên

 \(\left(a+b\right)^2=36\)

\(\Leftrightarrow a^2+2ab+b^2=36\)

\(\Leftrightarrow a^2+2+b^2=36\) ( vì  \(ab=1\) )

\(\Leftrightarrow a^2+b^2=34\)

Vậy,  \(M=34\)

21 tháng 5 2021

Do : \(4x^2=1\)

\(< =>\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

Ta thấy điều kiện xác định của B là \(x\ne-\frac{1}{2}\)

Suy ra  \(x=\frac{1}{2}\)

Ta có : \(B=\frac{x^2-x}{2x+1}=\frac{\frac{1}{4}-\frac{1}{2}}{\frac{1}{2}.2+1}=\frac{\frac{-1}{4}}{2}=-\frac{1}{8}\)

Vậy ......

21 tháng 5 2021

Ta có : \(A=\frac{1}{x-1}+\frac{x}{x^2-1}=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+1}{x^2-1}\)

Suy ra \(M=\frac{2x+1}{x^2-1}.\frac{x^2-x}{2x+1}=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x}{x+1}\)

20 tháng 8 2019

\(a^2+b=b^2+a\Leftrightarrow\left(a^2-b^2\right)+\left(b-a\right)=0\Leftrightarrow\left(a+b+1\right)\left(a-b\right)=0\) 

\(+,a+b+1=0\Rightarrow a+b=-1\Rightarrow Q=-3\) 

\(+,a=b\Rightarrow Q=\frac{a^2}{a^2-1}\)

20 tháng 8 2019

Nguyễn Văn Đạt

\(a^2-b^2+b-a=\left(a+b\right)\left(a-b\right)-\left(a-b\right)=\left(a+b-1\right)\left(a-b\right)\)

17 tháng 12 2016

\(\frac{a}{b}+\frac{b}{a}-ab=\frac{a^2+b^2-a^2b^2}{ab}=\frac{\left(a-b\right)^2+2ab-a^2b^2}{ab}=2\)

a)Ta có : \(4x^2=1\)

\(\Rightarrow\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

mà \(x\ne-\frac{1}{2}\Rightarrow x=\frac{1}{2}\)

Thay \(x=\frac{1}{2}\)vào B , ta được:

\(B=\frac{\left(\frac{1}{2}\right)^2-\frac{1}{2}}{2.\frac{1}{2}+1}=\frac{\frac{1}{4}-\frac{1}{2}}{1+1}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}\)

Vậy \(B=-\frac{1}{8}\)khi \(4x^2=1\)

b)Ta có : \(A=\frac{1}{x-1}-\frac{x}{1-x^2}\)

\(=\frac{1}{x-1}+\frac{x}{x^2-1}\)

\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow M=A.B=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x^2-x}{2x+1}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x\left(x-1\right)}{2x+1}\)

\(=\frac{x}{x+1}\)

Vậy \(M=\frac{x}{x+1}\)

c)Ta có: \(x< x+1\forall x\)

\(\Rightarrow M=\frac{x}{x+1}< \frac{x+1}{x+1}=1\forall x\ne-1\)

Vậy với mọi \(x\ne-1\)thì \(M< 1\)

4 tháng 3 2019

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

4 tháng 3 2019

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2

30 tháng 12 2016

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow ab+bc+ca=0\)

Theo đề bài ta có

\(M=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\frac{b^3c^3+a^3c^3+a^3b^3-3a^2b^2c^2+3^2b^2c^2}{a^2b^2c^2}\)

\(=\frac{\left(ab+bc+ca\right)\left(a^2b^2+b^2c^2+c^2a^2-a^2bc-ab^2c-abc^2\right)+3a^2b^2c^2}{a^2b^2c^2}=3\)

13 tháng 6 2018

có thể làm cách khác