K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

ab=6 suy ra a=6/b

a+b=b+6/b=(b^2+6)/b=5

suy ra b^2+6=5b

b^2-5b+6=0

suy ra (b-2)(b-3)=0

suy ra b=2; b=3

suy ra a=3; a=2

suy ra a^5+b^5=275

 

24 tháng 11 2017

fkfkbang14

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 1:

Sử dụng biến đổi tương đương. Ta có:

\(a^5+b^5\geq a^3b^2+a^2b^3\)

\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\geq 0\)

\(\Leftrightarrow a^3(a^2-b^2)-b^3(a^2-b^2)\geq 0\)

\(\Leftrightarrow (a^3-b^3)(a^2-b^2)\geq 0\)

\(\Leftrightarrow (a-b)^2(a^2+ab+b^2)(a+b)\geq 0\) (luôn đúng với mọi $a,b$ dương)

Ta có đpcm.

Dấu bằng xảy ra khi \((a-b)^2=0\Leftrightarrow a=b\)

Bài 2: Sử dụng kết quả bài 1:

\(a^5+b^5\geq a^3b^2+a^2b^3\Rightarrow a^5+b^5+ab\geq a^3b^2+a^2b^3+ab\)

\(\Rightarrow \frac{ab}{a^5+b^5+ab}\leq \frac{ab}{a^3b^2+a^2b^3+ab}=\frac{1}{a^2b+ab^2+1}=\frac{1}{a^2b+ab^2+abc}=\frac{1}{ab(a+b+c)}\)

Hoàn toàn tt:

\(\frac{bc}{b^5+c^5+bc}\leq \frac{1}{bc(a+b+c)}; \frac{ca}{c^5+a^5+ac}\leq \frac{1}{ac(a+b+c)}\)

Do đó:
\(P\leq \frac{1}{ab(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ac(a+b+c)}\). Thay \(1=abc\)

\(\Leftrightarrow P\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)

 

 

11 tháng 5 2018

Em xin cảm ơn!

21 tháng 3 2017

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)

\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)

\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Rightarrow\frac{1}{a^5+b^5+ab}\le\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cũng có: \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\le\frac{b}{a+b+c}\)

Cộng theo vế ta có: 

\(VT\le\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Đẳng thức xảy ra khi \(a=b=c=1\)

20 tháng 10 2017

Ta có:

\(a+b+c+ab+bc+ca=6\)

\(\Leftrightarrow12-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\Rightarrow a=b=c=1\)

\(\Rightarrow Q=\frac{1^{22}+1^{12}+1^{1994}}{1^{22}+1^{12}+1^{2013}}=\frac{3}{3}=1\)

21 tháng 11 2017

vào máy tính bấm sẽ ra đáp án = 1

NV
2 tháng 1 2020

\(a^3+b^3=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}-\frac{4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}=0\)

\(\Rightarrow a=-b\Rightarrow a^5+b^5=0\)

27 tháng 12 2017

a^5 + b^5 = 0 . 

27 tháng 12 2017

cách tính sao vậy