\(\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 2 2020

\(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)

\(A\ge\sqrt{\left(a+b\right)^2+\frac{16}{\left(a+b\right)^2}}=\sqrt{17}\)

Dấu "=" xảy ra khi \(a=b=2\)

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

ai nhanh nhat thi k

6 tháng 4 2018

Tìm trên mạng bạn nhé . 

Chúc bạn học giỏi ?

Cick cho mình nhé . 

bài dài quá nên mình không chép được

6 tháng 7 2016

Trả lời hộ mình đi

11 tháng 8 2016

Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)

Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)

Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)

Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)

\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)

b) Áp dụng bđt Cauchy : 

\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)

\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)

\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)

\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\) 

Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)

 

11 tháng 8 2016

pn ơi , bđt cauchy : \(a+b\ge2\sqrt{ab}\)

s lại là \(2\sqrt{4a.b}+\sqrt{ab}\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

21 tháng 7 2018

từ giả thiết, ta có \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\Rightarrow xy+yz+xz=1\)

Ta có \(\frac{1}{\sqrt{a^2+1}}=\frac{1}{\sqrt{\frac{1}{x^2}+1}}=\frac{1}{\sqrt{\frac{1+x^2}{x^2}}}=\frac{x}{\sqrt{x^2+xy+yz+zx}}\) =\(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Áp dụng BĐT cô-si, ta có \(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự, rồi cộng lại, ta có 

A\(\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

=> A<=3/2

Dấu = xảy ra <=> \(a=b=c=\sqrt{3}\)

^_^

15 tháng 10 2017

Áp dụng bđt AM - GM ta có :

\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{a^2}}\ge\sqrt{2\frac{a^2}{b^2}}+\sqrt{2\frac{b^2}{a^2}}=\sqrt{2}\frac{a}{b}+\sqrt{2}\frac{b}{a}\)

\(=\sqrt{2}\left(\frac{a}{b}+\frac{b}{a}\right)\ge\sqrt{2}.2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\sqrt{2}\)

NV
5 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến