Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c
Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c
\(a+b=x+y\)
\(\Leftrightarrow a-x=y-b\)
\(a^2+b^2=x^2+y^2\)
\(\Leftrightarrow a^2-x^2=y^2-b^2\)
\(\Leftrightarrow\left(a-x\right)\left(a+x\right)=\left(y-b\right)\left(y+b\right)\)
\(\Leftrightarrow a+x=y+b\Rightarrow a-b=y-x\)
Mà theo đề bài \(a+b=x+y\) nên \(\left(a+b\right)+\left(a-b\right)=\left(x+y\right)+\left(y-x\right)\)
\(2a=2y\Rightarrow a=y\) Nên \(a+b=x+y\Rightarrow b=x\)
\(\Rightarrow a^{2017}=y^{2017};b^{2017}=x^{2017}\)
\(\Rightarrow a^{2017}+b^{2017}=x^{2017}+y^{2017}\) (đpcm)
Ta có a^2 + b^2 + (a - b)^2= c^2 + d^2 + (c - d)^2.
=> a^4+b^4+(a-b)^4+2[a^2b^2+a^2(a-b)^2+b^2(a-b)2]=
=c^4+d^4+(c-d)^4+2[c^2d^2+c^2(c-d)^2+d^2(c-d)^2
<=>a^4+b^4+(a-b)^4+2[a^2b^2+(a^2+b^2)(a-b)^2]
=c^4+d^4+(c-d)^4+2[c^2d^2+(c^2+d^2)(c-d)^2
Lại có a^2 + b^2 + (a - b)^2 = c^2 + d^2 + (c - d)^2.
=> 2(a^2+b^2-ab) =2(c^2+d^2-cd)
=>a^2+b^2-ab =c^2+d^2-cd
=>(a^2+b^2)2+a^2b^2-2ab(a^2+b^2)=(c^2+d^2)^2+c^2d^2-2cd(c^2+d^2).
=>a^2b^2+(a^2+b^2)(a^2+b^2-2ab)=c^2d^2+(c^2+d^2)(c^2+d^2-2cd)
=>a^2b^2+(a^2+b^2)(a-b)^2=c^2d^2+(c^2+d^2)(c-d)^2
Từ đó bạn sẽ có đpcm
Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ac}{abc}=0\Leftrightarrow ab+bc+ac=0\)
Ta có:
\(a+b+c=1\)
\(\Leftrightarrow\left(a+b+c\right)^2=1\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=1\)
\(\Leftrightarrow a^2+b^2+c^2=1\left(đpcm\right)\)
#)Giải :
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b=2a^2+2b^2\)
\(\Leftrightarrow2ab=a^2+b^2\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a=b\left(đpcm\right)\)
Ta có:\
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)và\(b^2\) nha bạn)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(a=b\)
Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
Thì \(a=b\)
Bạn có thể giải ngắn hơn nếu áp dụng BĐT Cauchy
Do \(a^2\ge0;b^2\ge0\)
suy ra áp dụng BĐT cauchy ta có
\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi và chỉ khi a=b)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)và\(b^2\) nha bạn)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(a=b\)
Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
Thì \(a=b\)