K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

a) 

\(a^4+3>4a\)

<=> \(a^4-4a+3>0\)

<=> \(a^4-a^3+a^3-a^2+a^2-a-3a+3>0\)

<=> \(a^3\left(a-1\right)+a^2\left(a-1\right)+a\left(a-1\right)-3\left(a-1\right)\)

<=> \(\left(a-1\right)\left(a^3+a^2+a-3\right)>0\)

20 tháng 10 2019

a) \(a^2+b^2=a^2+\frac{1}{4}+b^2+\frac{1}{4}-\frac{1}{2}\)  

\(\ge2\sqrt{a^2.\frac{1}{4}}+2\sqrt{b^2.\frac{1}{4}}-\frac{1}{2}\) (bdt cosi)

\(=a+b-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}\) (vi a+b=1)

dau = xay ra <=> a=b=1/2

chuc ban hoc tot

mik phai di ngu nen lam hoi tat mong bn thong cam

phan b bn lam tuong tu nha

21 tháng 10 2019

1/ Ta có:

\(\left(a-b\right)^2\ge0,\) mọi a, b

<=> \(a^2-2ab+b^2\ge0\)

<=> \(2a^2+2b^2\ge a^2+2ab+b^2\)

<=> \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

<=> \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)

Dấu bằng xảy ra <=>  a - b = 0 <=> a  = b.

2/ Dựa vào câu 1. 

\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\).

24 tháng 3 2018

Ta có:\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)

\(\Rightarrow a^2+b^2>2\left(đpcm\right)\)

22 tháng 4 2018

> hay ≥

22 tháng 4 2018

hattori heiji cứ lm đi chắc \(\ge\)

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

28 tháng 11 2016

2a2b2+ 2b2c2+ 2c2a2- a4- b4- c4

=4a2b2-(a4+2a2b2+b4)+(2b2c2+2a2c2)-c4

=2(ab)2-(a+b)2+2c2(a2+b2)-c4

=2(ab)2-[(a+b)2-2c2(a2+b2)+c4]

=2(ab)2-(b2+a2-c2)2

=(2ab+b2+a2-c2)(2ab-b2-a2+c2)

=[(a+b)2-c2][-(a-b)2+c2]

=(a+b-c)(a+b+c)(c-a+b)(a+c-b)

Vì a,b,c là 3 cạnh 1 tam giác nên:

a+b>c suy ra b+a-c>0

a+c>b suy ra a-b+c>0

a,b,c>0 suy ra a+b+c>0

b+c>a suy ra b+c-a>0

Vậy ta có điều phải chứng minh

28 tháng 11 2016

dấu = thứ hai là (2ab)2- (a2+b2)2+2c2(a2+b2)-c4