K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2=0\)

\(\Leftrightarrow-a^2+2ab-b^2=0\)

\(\Leftrightarrow-\left(a^2-2ab+b^2\right)=0\)

\(\Leftrightarrow-\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)

23 tháng 6 2018

Giải:

Ta có: \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2ab=2a^2-a^2+2b^2-b^2\)

\(\Leftrightarrow2ab=a^2+b^2\)

\(\Leftrightarrow a^2+b^2-2ab=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\)

\(\Leftrightarrow a=b\) (đpcm)

Vậy ...

28 tháng 6 2018

\(\left(a+b+c\right)^2=3\left(a^2+b^2+c ^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2=0\)

\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)

\(\Leftrightarrow a=b=c\)

29 tháng 6 2017

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\)

\(\Leftrightarrow a=b\left(đpcm\right)\)

Vậy...

30 tháng 6 2017

cảm ơn bạn nhoavui

a^2+b^2<2

=>a^2<2-b^2

=>\(a< \sqrt{2-b^2}< =2-b\)

=>a+b<=2

11 tháng 8 2017

Ta có: \(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)

=> đpcm.

11 tháng 8 2017

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Lời giải:

Vì $a^2+b^2=1$ nên:

\((a+b)^2-2=(a+b)^2-2(a^2+b^2)=(a^2+2ab+b^2)-2(a^2+b^2)\)

\(=2ab-(a^2+b^2)=-(a^2-2ab+b^2)=-(a-b)^2\leq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow (a+b)^2\leq 2\)

Ta có đpcm.

Dấu "=" xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

9 tháng 6 2020

Ta có : \(a^2+b^2\ge ab+1\)

\(2\sqrt{a^2b^2}\ge ab+1\)

\(ab\ge1\)

Dấu = xảy ra \(< =>a=b=\sqrt{1}=1\)

Bđt ngược dấu rồi thì phải

16 tháng 7 2018

Đó là hằng đẳng thức phải ko bạn

16 tháng 7 2018

Đúng rồi bạn

14 tháng 8 2016

a) Ta có: \(a^2-1\le0;b^2-1\le0;c^2-1\le0\) 

\(\Rightarrow\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\le0\)

\(a^2+b^2+c^2\le1+a^2b^2+b^2c^2+c^2a^2-a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\) ( vì \(abc\ge0\) )

Có \(b-1\le0\Rightarrow a^2b\sqrt{b}\left(b-1\right)\le0\Rightarrow a^2b^2\le a^2b\sqrt{b}\)

Tương tự: \(\hept{\begin{cases}b^2c^2\le b^2c\sqrt{c}\\c^2a^2\le c^2a\sqrt{a}\end{cases}\Rightarrow dpcm}\)