Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(a+b)3=a3+b3+3a2b+3ab2
(a+b)3=a3+b3+3ab(a+b)
thay a+b=10 và ab=4 ta được:
103=a3+b3+3.4.10
1000=a3+b3+120
=>a3+b3=1000-120
=880
b)(a+b)2=a2+2ab+b2
thay a+b=10 và ab=4
ta được :
102=a2+b2+2.4
100=a2+b2=8
=>a2+b2=100-8=92
=>(a2+b2)2=a4+2a2b2+b4
(a2+b2)2=a4+b4+2(ab)2
thay a2+b2=92 và ab=4 ta được
922=a4+b4+2.42
8464=a4+b4+32
=>a4+b4=8464-32
=8432
c)(a2+b2)2(a3+b3)=a5+a2b3+a3b2+b5
(a2+b2)(a3+b3)=a5+ab(a+b)+b5
thay a+b=10;a2+b2=92 và a3+b3=880;ab=4
ta được:
92.880=a5+4.10+b5
80960=a5+b5+40
=>a5+b5=80960-40
=80920
a) vì a+b=10
=> \(\left(a+b\right)^2=10^2=100\)
\(< =>a^2+2ab+b^2=100\)
\(< =>a^2+b^2+2.4=100\)(vì ab=4)
\(< =>a^2+b^2=100-8\)
\(< =>a^2+b^2=92\)
b) theo câu a ta có \(a^2+b^2=92\)
\(< =>\left(a^2+b^2\right)^2=92^2=8464\)
\(< =a^4+b^4+2a^2b^2=8464\)
\(< =>a^4+b^4+2.\left(ab\right)^2=8464\)
\(< =>a^4+b^4+2.4^2=8464\)
\(< =>a^4+b^4=8464-32\)
\(< =>a^4+b^4=8432\)
\(a-b=8\Rightarrow\left(a-b\right)^2=8^2=64\)
\(\Rightarrow a^2-2ab+b^2=64\)
\(\Rightarrow a^2+b^2-2.10=64\)
\(\Rightarrow a^2+b^2=84\)
\(\Rightarrow a^2+2ab+b^2=84+2.10=84+20=104\)
\(\Rightarrow\left(a+b\right)^2=104\)
\(a)\) Ta có :
\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)
Vậy \(A=29\)
\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)
Vậy \(B=133\)
\(b)\) Đặt \(A=-x^2+x-1\) ta có :
\(-A=x^2-x+1\)
\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)
Vậy \(A< 0\) với mọi số thực x
Chúc bạn học tốt ~
\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)
\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)
\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)
\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)
\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)
\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)
A = x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 13 - 3xy.0
= 1 - 0 = 1
Vậy A = 1
b) B = x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1 + 0 = 1
Vậy B = 1
M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )
= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2
= 1
Vậy M = 1
d) x + y = 2
⇔ ( x + y )2 = 4
⇔ x2 + 2xy + y2 = 4
⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )
⇔ 2xy = -6
⇔ xy = -3
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 23 - 3.(-3).(2)
= 8 + 18 = 26
\(B=\frac{16}{\left(a-b\right)\left(a+b\right)}\)
Ta có : \(a^2+2ab+b^2=10+2ab=16\)
<=>\(\left(a+b\right)^2=16\) Vì a, b đều dương nên ta có : \(a+b=4\)
Mặt khác ta lại có : \(a^2-2ab+b^2=10-2ab=4\)
<=> \(\left(a-b\right)^2=4\)<=> \(\orbr{\begin{cases}a-b=4\\a-b=-4\end{cases}}\)
=> Bạn thay vào B tính nha
\(a-b=3\Rightarrow\left(a-b\right)^2=9\Rightarrow a^2-2ab+b^2=9\Rightarrow a^2+2ab+b^2-4ab=9\)
\(\Rightarrow\left(a+b\right)^2-4ab=9\)
Thay (a + b)2 = 10 vào ta có:
\(10-4ab=9\Rightarrow4ab=1\Rightarrow ab=\frac{1}{4}.\)