Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\) (*)
Ta có:
\(a-b=1\)
\(\Rightarrow\left(a-b\right)^2=1\)
\(\Rightarrow a^2-2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1+2ab\left(1\right)\)
Ta lại có: \(ab=6\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=1.\left(1+2ab+ab\right)\)
\(=1+3ab\)
\(=1+3.6\)
\(=19\)
b) \(a^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)(*)
Ta có:
\(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)
Ta lại có: \(ab=-1\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=1\left(1-2ab+ab\right)\)
\(=1-ab\)
\(=1-\left(-1\right)\)
\(=2\)
c) \(2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)
\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3\left(a^2+b^2\right)\) (*)
Ta có:
\(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)
Ta lại có: \(ab=-2\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=2.1\left(1-2ab-ab\right)-3\left(1-2ab\right)\)
\(=2\left(1-3ab\right)-3\left(1-2ab\right)\)
\(=2\left[1-3.\left(-2\right)\right]-3\left[1-2.\left(-2\right)\right]\)
\(=2.7-3.5\)
\(=29\)
d) \(x^3+y^3+3xy\)
\(=x^3+y^3+3xy\left(x+y\right)\) ( Vì x + y = 1 nên GTBT không đổi )
\(=\left(x+y\right)^3\)
\(=1\)
e) \(x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\) ( Vì x - y = 1 nên GTBT không đổi )
\(=\left(x-y\right)^3\)
\(=1\)
\(\left(3+xy\right)^2=9+6xy+xy^2\)
\(\left(10-m^2n\right)^2=100-20m^2n^2+m^4n^2\)
\(\left(a-b^2\right)\left(a+b^2\right)=a^2-b^4\)
\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)
\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)
\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)
\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)
\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)
\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)
A = x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 13 - 3xy.0
= 1 - 0 = 1
Vậy A = 1
b) B = x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1 + 0 = 1
Vậy B = 1
M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )
= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2
= 1
Vậy M = 1
d) x + y = 2
⇔ ( x + y )2 = 4
⇔ x2 + 2xy + y2 = 4
⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )
⇔ 2xy = -6
⇔ xy = -3
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 23 - 3.(-3).(2)
= 8 + 18 = 26
1)a2b+ab2=ab(a+b)=2ab
Ta có: (a-b)2\(\ge\)0
=>a2+b2\(\ge\)2ab
=>(a+b)2\(\ge\)4ab
=>22\(\ge\)4ab
=>2\(\ge\)2ab
Vậy...
2)a2b3+a3b2=ab(a2b+ab2)\(\le\)1.(a2b+ab2)(từ câu 1 có 2\(\ge\)2ab)
Chứng minh tiếp tục tương tự ý 1) thì max a2b3+a3b2=2
3)2(ab3+a3b)=(a+b)(ab3+a3b)=a2b3+a3b2+2a2b2\(\le\)2+2.12(Từ câu 2 max a2b3+a3b2=2 ; từ câu 1 thì từ câu 1 có 2\(\ge\)2ab)=4
=>ab3+a3b\(\le\)2
1) \(\left(y+3\right)^3-\left(y-1\right)^3\)
=(y+3-y+1)\(\left[\left(y+3\right)^2+\left(y+3\right)\left(y-1\right)+\left(y-1\right)^2\right]\)
=4.(\(y^2+6y+9\)+\(y^2-y+3y-3\)+\(y^2-2y+1\))
=4(\(3y^2+6y+7\))
=\(12y^2+24y+28\)
3.
\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(=1.\left(a^2+b^2-ab\right)\) (1)
Lại có : \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab\) thay vào (1) có :
\(a^3+b^3=1.\left(1-2ab-ab\right)\)
\(=1-3ab\left(đpcm\right)\)
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab\right)\)
\(=a^2-ab+b^2+3ab\left(a+b\right)^2=a^2-ab+b^2+3ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2=1\)
2(a3 + b3) - 3(a2 + b2) = 2(a + b)(a2 - ab + b2) - 3a2 - 3b2
= 2.1.(a2 - ab + b2) - 3a2 - 3b2
= 2a2 - 2ab + 2b2 - 3a2 - 3b2
= - a2 - b2 - 2ab
= - (a + b)2
= - 1