\(\left(1+\frac{1}{a}\right)\)\(\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

bài này phải a;b dương nhá

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)=\left(1+1+\frac{b}{a}\right)\left(1+1+\frac{a}{b}\right)\)

\(=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)=4+2\frac{a}{b}+2\frac{b}{a}+1=5+2\left(\frac{a}{b}+\frac{b}{a}\right)>=5+2\cdot2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}\)(bđt cosi)

\(=5+2\cdot2=5+4=9\)

dấu = xảy ra khi \(\frac{a}{b}=\frac{b}{a}\Rightarrow a=b=\frac{1}{2}\)

vậy \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)>=9\)khi a=b=\(\frac{1}{2}\)

12 tháng 5 2018

dài dòng quá làm gọn hơn

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)

\(=1+\frac{1}{b}+\frac{1}{a}+\frac{1}{ab}\ge1+\frac{4}{a+b}+\frac{4}{\left(a+b\right)^2}\)

\(=1+4+4=9\)

Vậy........ khi \(a=b=\frac{1}{2}\)

4 tháng 7 2020

easy !

Áp dụng bđt cauchy schwarz dạng engel :

\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)

dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !

Bài 1 : 

a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)

\(=x-2x^2+2x^2-x+d=d\)

Đặt \(f\left(x\right)=0\)hay \(d=0\)

Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)

b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)

Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm 

17 tháng 3 2018

a, Ta cần phải chứng minh (a+b)(\(\frac{1}{a}+\frac{1}{b}\))=1+\(\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\ge4\) vì

 \(\frac{a}{b}+\frac{b}{a}\ge2\)(cái này bạn tìm hiểu kĩ hơn nha,nhưng mk nghĩ thế này đc rồi đó)

Dấu ''='' xảy ra \(\Leftrightarrow\)a=b.

d,(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))=1+\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=3+(\(\frac{a}{b}+\frac{b}{a}\))+(\(\frac{a}{c}+\frac{c}{a}\))+(\(\frac{c}{b}+\frac{b}{c}\))\(\ge\)3+2+2+2=9

Dấu ''='' xảy ra \(\Leftrightarrow\)a=b=c

e,Xét hiệu :

\(^{a^3+b^3+c^3-3abc=\left(a^2+b^2+c^2-ab-ac-bc\right)\left(a+b+c\right)}\)  => cái này bạn nhân ra trước rồi phân tích đa thức thành nhân tử nha.

=\(\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) \(\Rightarrow\)ĐPCM

4 tháng 8 2015

DÀi lắm 

26 tháng 10 2016

Ta có : \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)

\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\Leftrightarrow ab+a+b+1\ge9ab\) ( vì \(ab>0\) )

\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) ( vì \(a+b=1\) )

\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\) ( Vì \(a+b=1\) ) \(\Leftrightarrow\left(a-b\right)^2\ge0\left(2\right)\)

BĐT ( 2 ) đúng , mà các phép biến đổi trê tương đương , vây BĐT ( 1 ) được chứng minh . Xảy ra đẳng thức khi và chỉ khi \(a=b\)

10 tháng 5 2017

phân tích lần lượt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1\)(tự nhân ra hộ mình nhé)

\(=\left(a+b+c\right)-\left(ab+bc+ca\right)\)(vì abc=1)

Theo đề bài ta có: \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=ab+bc+ca\)(vì abc=1)

\(\Rightarrow\left(a+b+c\right)-\left(ab+bc+ca\right)>0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)