Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
Ta có điều phải chứng minh: \(\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}=\frac{3}{\sqrt{2}}\)
\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{x^2+1}+\frac{1}{x^2+1}=\frac{3}{\sqrt{2}}\) với điều kiện x bình phương lên = \(\sqrt{a^2+1};\sqrt{b^2+1};\sqrt{c^2+1}\)
\(\Leftrightarrow1+1+1+x^2+x^2+x^2=\frac{3}{\sqrt{2}}\)
\(=3+x^2+x^2+x^2=\frac{3}{\sqrt{2}}\)
Coi 3 là tử, các số x2 còn lại là mẫu. Ta có: \(\frac{3}{x^2+x^2+x^2}=\frac{3}{\sqrt{2}}\)
\(\RightarrowĐPCM\)
Ps: Mình mới học lớp 6 đó! Nhưng vẫn cố giải bài lớp 9
1/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)
\(\Leftrightarrow\frac{a+b+c}{abc}=0\)(đúng)
Vậy ta có ĐPCM
2/ \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2006}-\sqrt{2005}\)
\(=\sqrt{2006}-1\)
a) CM bằng biến đổi tương đương : \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\Leftrightarrow a+b< a+b+2\sqrt{ab}\Leftrightarrow\sqrt{ab}>0\) (luôn đúng)
=> bđt đc cm
b) Áp dụng bđt \(x^2+y^2+z^2\ge xy+yz+zx\) với x = \(\sqrt{a}\) , y = \(\sqrt{b}\) , z = \(\sqrt{c}\) được đpcm
c) thừa hạng tử c???
Bài của bạn cần thêm điều kiện a,b,c > 0