Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ƯCLN(a;b) = 18
=> Đặt \(\hept{\begin{cases}a=18m\\b=18n\end{cases}\left(m,n\right)=1;\left(m;n\inℕ^∗\right)}\)
Khi đó : a + b = 162
<=> 18m + 18n = 162
=> m + n = 9
Ta có : 9 = 1 + 8 = 2 + 7 + 4 + 5 ( Vì\(\left(m;n\right)=1\))
Lập bảng xét các trường hợp
m | 1 | 8 | 2 | 7 | 4 | 5 |
n | 8 | 1 | 7 | 2 | 5 | 4 |
a | 18 | 144 | 36 | 126 | 72 | 90 |
b | 144 | 18 | 126 | 36 | 90 | 72 |
Vậy các cặp (a;b) thỏa mãn là : (18;144) ; (144;18) ; (36;126) ; (126;36) ; (72;90) ; (90;72)
Ta có:BCNN và ƯCNN của cùng 2 số luôn chia hết cho nhau
=> 19\(⋮\)ƯCLN(a,b)
Mà:ƯCLN của 2 số luôn luôn dương
=>ƯCLN(a,b)=1
Xét ƯCLN(a,b)=1
=>a và b là 2 số nguyên tố cùng nhau và có BCLN là 18 .
Có:
18 = 2.32
\(\Rightarrow\orbr{\begin{cases}a=2;b=3^2\Leftrightarrow a=2;b=9\\a=3^2;b=2\Leftrightarrow a=9;b=2\end{cases}}\)
Vậy nếu: a=2 thì b=9
a=9 thì b=2
@Sorou@ a<b.Câu hỏi của Võ Nguyễn Anh Quân - Toán lớp 6 - Học toán với OnlineMath
Ta có: BCNN ( a; b ) \(⋮\)UCLN ( a; b )
và UCLN ( a; b ) \(⋮\)UCLN ( a; b )
=> BCNN( a; b ) + UCLN ( a; b ) \(⋮\)UCLN ( a; b )
=> 19 \(⋮\)UCLN ( a; b )
=> UCLN ( a; b ) = 1 hoặc UCLN (a; b ) = 19 ( loại)
=> BCNN ( a; b ) = 18 = \(3^2.2.1\)
Vì a < b và (a; b ) = 1.
Nên xảy ra 2TH:
TH1: a = 1, b = 18 (tm)
TH2: a = 2 , b = 9 (tm)
Kết luận: a = 1; b = 18 hoặc a = 2; b =9.