Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\ge\left(a+b+1\right).2ab+\frac{4}{a+b}\)
\(=2.\left(a+b\right)+2+\frac{4}{a+b}\)
\(=a+b+2+a+b+\frac{4}{a+b}\)
\(\ge2.\sqrt{a.b}+2+2.\sqrt{\left(a+b\right).\frac{4}{a+b}}=2+2+2\sqrt{4}\)
\(=2+2+4=8\)
Vậy\(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)với ab=1
Có bđt x2 + y2 \(\ge\)( x + y) /2 ( * )
( * ) \(\Leftrightarrow\)2x2 + 2y2\(\ge\)x2 + 2xy + y2 \(\Leftrightarrow\)x2 - 2xy +y2 \(\ge\)0 \(\Leftrightarrow\)( x- y)2 \(\ge\)0
Dấu "=" xảy ra khi x = y =1
Thay bđt ( * ) vào bài toán ta có:
a4 + b4 \(\ge\)(a2 + b2)2 / 2 \(\Leftrightarrow\)a4 + b4 \(\ge\)[(a + b)2 /2]2 /2 = 2 ( đpcm)
Dấu "=" xảy ra khi a = b = 1
Thay a = b = 1 vào bt ta có:
\(\frac{5a^2}{b}\)+ \(\frac{3b^2}{a^2}\)\(\ge\)8
Lần lượt áp dụng bất đẳng thức Cô - si có 3 và 4 số, ta có:
\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3.\sqrt[3]{\frac{a}{18}.\frac{b}{24}.\frac{2}{ab}}=\frac{1}{2}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ac}\ge3.\sqrt[3]{\frac{a}{9}.\frac{c}{6}.\frac{2}{ac}}=1\)
\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3.\sqrt[3]{\frac{b}{16}.\frac{c}{8}.\frac{2}{bc}}=\frac{3}{4}\)
\(\frac{a}{9}+\frac{b}{12}+\frac{c}{6}+\frac{8}{abc}\ge4.\sqrt[4]{\frac{a}{9}.\frac{b}{12}.\frac{c}{6}.\frac{8}{abc}}=\frac{4}{3}\)
\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}.\frac{13b}{24}}\ge2\sqrt{\frac{13.13.12}{18.24}}=\frac{13}{3}\)
\(\frac{13c}{24}+\frac{13b}{48}\ge2\sqrt{\frac{13c}{24}.\frac{13b}{48}}\ge2\sqrt{\frac{13.13.8}{24.48}}=\frac{13}{6}\)
Cộng vế với vế ta có:
\(a+b+c+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
C1: \(VT=\frac{a^2}{b-1}+4\left(b-1\right)+\frac{b^2}{a-1}+4\left(a-1\right)-4\left(a+b\right)+8\)
\(\ge2\sqrt{\frac{a^2}{b-1}.4\left(b-1\right)}+2\sqrt{\frac{b^2}{a-1}.4\left(a-1\right)}-4\left(a+b\right)+8\)
\(=4\left(a+b\right)-4\left(a+b\right)+8=8^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = 2
C2: áp dụng BĐT Svac:
\(VT\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{t^2}{t-2}\left(a+b=t\right)\). Ta chứng minh \(\frac{t^2}{t-2}\ge8\Leftrightarrow t^2-8t+16\ge0\Leftrightarrow\left(t-4\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi ...