K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

a(b+1) + b(a+1) = ab + a + ab + b = 2ab + a + b = a + b + 2 (1)

(a+ 1)(b+1) = ab + a + b + 1 = 1 + a + b + 1 = a + b + 2 (2)

Từ (1) (2) => a(b+1) + b(a+1) = (a+1)(b+1)

6 tháng 5 2018

@Aki Tsuki than hay quá bạn ơii

4 tháng 11 2024

1) a/b = a - 1. vì a+ b= ab
                     ( ab-a) - 1= 0
                     a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
          => b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý) 
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
                2)     => 2a = 1 => a= 1/2
3) khi đó : a/b = 1/2 : (-1) = -1/2 
                a-1 = 1/2 -1 = -1/2
 => a/b = a-1 ( đpcm)
 vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi

 

7 tháng 12 2018

a, \(\left(a+1\right)^2\ge4a\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)

b, Áp dụng bđt Cô-si

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

                                                               \(=8\sqrt{abc}=8\)(ĐPCM)

Dấu "=" khi a = b = c =1

7 tháng 12 2018

a, \(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1>4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)

b, Áp dụng bất đẳng thức trên ta có :

( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)

mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)

Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.

Khi đó : a + 1 > \(2\sqrt{a}\)

Tương tự ta có : 

b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)

=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)

AH
Akai Haruma
Giáo viên
12 tháng 3 2022

Lời giải:
a. Xét tam giác $ABH$ và $ACH$ có:

$AB=AC$ (do $ABC$ là tg cân) 

$AH$ chung 

$\widehat{AHB}=\widehat{AHC}=90^0$

$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv) 

$\Rightarrow HB=HC$.

b. Xét tam giác $AHD$ và $AHE$ có:

$AH$ chung 

$\widehat{A_1}=\widehat{A_2}$ (do 2 tam giác bằng nhau phần a) 

$\widehat{ADH}=\widehat{AEH}=90^0$

$\Rightarrow \triangle AHD=\triangle AHE$ (ch-gn) 

$\Rightarrow \widehat{AHD}=\widehat{AHE}$ 

$\Rightarrow HA$ là tia phân giác góc $\widehat{DHE}$

c.

Từ tam giác bằng nhau phần b thì suy ra $AD=AE$

$\Rightarrow ADE$ là tam giác cân tại $A$

$\Rightarrow \widehat{AED}=\frac{1}{2}(180^0-\widehat{A})(1)$

Tam giác $ABC$ cân tại $A$

$\Rightarrow \widehat{ACB}=\frac{1}{2}(180^0-\widehat{A})(2)$

Từ $(1); (2)\Rightarrow \widehat{AED}=\widehat{ACB}$
Hai góc này ở vị trí đồng vị nên $DE\parallel BC$

 

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0