Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a/b = a - 1. vì a+ b= ab
( ab-a) - 1= 0
a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
=> b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý)
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
2) => 2a = 1 => a= 1/2
3) khi đó : a/b = 1/2 : (-1) = -1/2
a-1 = 1/2 -1 = -1/2
=> a/b = a-1 ( đpcm)
vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi
a, \(\left(a+1\right)^2\ge4a\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)
b, Áp dụng bđt Cô-si
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
\(=8\sqrt{abc}=8\)(ĐPCM)
Dấu "=" khi a = b = c =1
a, \(\left(a-1\right)^2\ge0\)
\(\Rightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1>4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)
b, Áp dụng bất đẳng thức trên ta có :
( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)
mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)
Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.
Khi đó : a + 1 > \(2\sqrt{a}\)
Tương tự ta có :
b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)
=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)
Lời giải:
a. Xét tam giác $ABH$ và $ACH$ có:
$AB=AC$ (do $ABC$ là tg cân)
$AH$ chung
$\widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)
$\Rightarrow HB=HC$.
b. Xét tam giác $AHD$ và $AHE$ có:
$AH$ chung
$\widehat{A_1}=\widehat{A_2}$ (do 2 tam giác bằng nhau phần a)
$\widehat{ADH}=\widehat{AEH}=90^0$
$\Rightarrow \triangle AHD=\triangle AHE$ (ch-gn)
$\Rightarrow \widehat{AHD}=\widehat{AHE}$
$\Rightarrow HA$ là tia phân giác góc $\widehat{DHE}$
c.
Từ tam giác bằng nhau phần b thì suy ra $AD=AE$
$\Rightarrow ADE$ là tam giác cân tại $A$
$\Rightarrow \widehat{AED}=\frac{1}{2}(180^0-\widehat{A})(1)$
Tam giác $ABC$ cân tại $A$
$\Rightarrow \widehat{ACB}=\frac{1}{2}(180^0-\widehat{A})(2)$
Từ $(1); (2)\Rightarrow \widehat{AED}=\widehat{ACB}$
Hai góc này ở vị trí đồng vị nên $DE\parallel BC$
a(b+1) + b(a+1) = ab + a + ab + b = 2ab + a + b = a + b + 2 (1)
(a+ 1)(b+1) = ab + a + b + 1 = 1 + a + b + 1 = a + b + 2 (2)
Từ (1) (2) => a(b+1) + b(a+1) = (a+1)(b+1)
@Aki Tsuki than hay quá bạn ơii