Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab\le\frac{a^2+b^2}{2}\le\frac{16}{2}=8\)
Ta có: \(N^2=\left(a\sqrt{9b\left(a+8b\right)}+b\sqrt{9a\left(b+8a\right)}\right)^2\)
\(\le\left(a^2+b^2\right)\left[9b\left(a+8b\right)+9a\left(b+8a\right)\right]\)
\(\le16\left(18ab+72\left(a^2+b^2\right)\right)\le16\left(18.8+72.16\right)\)
\(=20736\)
=> \(N\le144\)
Dấu "=" xảy ra <=> a = b = \(\sqrt{8}\)
Vậy max N = 144 tại a = b = \(\sqrt{8}\)
Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma
giúp e vs ạ! Cần gấp!
thanks nhiều!
\(B=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+x\left(a+b\right)+ab}{x}=x+\frac{ab}{x}+\left(a+b\right)\)
Áp dụng bđt Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\)
\(\Rightarrow B\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi \(x=\frac{ab}{x}\Rightarrow................\)
Vậy ......................
Bài tìm MAX tồn tại hai giá trị , do k có điều kiện ràng buộc biến x
3 g) \(xyz=x+y+z+2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\Sigma_{cyc}\left(x+1\right)\left(y+1\right)\)
\(\Rightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\) .Đặt \(\frac{1}{x+1}=a;\frac{1}{y+1}=b;\frac{1}{z+1}=c\Rightarrow x=\frac{1-a}{a}=\frac{b+c}{a};y=\frac{c+a}{b};z=\frac{a+b}{c}\) vì a + b + c = 1.
Khi đó \(P=\Sigma_{cyc}\frac{1}{\sqrt{\frac{\left(b+c\right)^2}{a^2}+2}}=\Sigma_{cyc}\frac{a}{\sqrt{2a^2+\left(b+c\right)^2}}\)
\(=\sqrt{\frac{2}{9}+\frac{4}{9}}.\Sigma_{cyc}\frac{a}{\sqrt{\left[\left(\sqrt{\frac{2}{9}}\right)^2+\left(\sqrt{\frac{4}{9}}\right)^2\right]\left[2a^2+\left(b+c\right)^2\right]}}\)
\(\le\sqrt{\frac{2}{3}}\Sigma_{cyc}\frac{a}{\sqrt{\left[\frac{2}{3}a+\frac{2}{3}b+\frac{2}{3}c\right]^2}}=\frac{\sqrt{6}}{2}\left(a+b+c\right)=\frac{\sqrt{6}}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=2\)
3c) Nhìn quen quen, chả biết có lời giải ở đâu hay chưa nhưng vẫn làm:D (Em ko quan tâm nha!)
\(P=3-\Sigma_{cyc}\frac{2xy^2}{xy^2+xy^2+1}\ge3-\Sigma_{cyc}\frac{2xy^2}{3\sqrt[3]{\left(xy^2\right)^2}}=3-\frac{2}{3}\Sigma_{cyc}\sqrt[3]{\left(xy^2\right)}\)
\(\ge3-\frac{2}{3}\Sigma_{cyc}\frac{x+y+y}{3}=3-\frac{2}{3}\left(x+y+z\right)=3-2=1\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Cho \(x^2+y^2=1\).Tìm min max \(\sqrt{3}xy+y^2\)
Cho \(a^2+b^2\le2\left(a+b\right)\) Tìm min max 2a+b
\(P=\dfrac{1}{2}\sqrt{4a\left(b+3\right)}+\dfrac{1}{2}\sqrt{4b\left(a+3\right)}\)
\(P\le\dfrac{1}{4}\left(4a+b+3\right)+\dfrac{1}{4}\left(4b+a+3\right)\)
\(P\le\dfrac{1}{4}\left(5a+5b+6\right)\le\dfrac{1}{4}\left(5.2+6\right)=4\)
\(P_{max}=4\) khi \(a=b=1\)